کاهش سمیت رزین‌ آکریلیک با حذف مونومرهای آزاد باقی‌مانده جهت توسعه جوهر رسانای نقره با پایداری بهبودیافته

نوع مقاله : مقاله پژوهشی

نویسنده

گروه محیط زیست و رنگ، پژوهشگاه رنگ، تهران، ایران، صندوق پستی: 654-16765

10.30509/jcst.2025.167617.1268

چکیده

هدف این مطالعه، طراحی رزین آکریلیک  کم‌سمیت برای ساخت جوهر رسانای نقره مورد استفاده در چاپ مدارهای رسانا است. رزین آکریلیک   کربوکسیله- هیدروکسیله بر پایه مونومرهای متیل متاکریلات، بوتیل اکریلات، آکریلیک  اسید و 2-هیدروکسی اتیل متاکریلات از طریق بسپارش رادیکالی آزاد به صورت محلولی سنتز شد. خصوصیات رزین نظیر دمای گذار شیشه‌ای (Tg) °C 40، عدد اسیدی 8.2، عدد هیدروکسیلی (mgKOH/g) 6/56، با استفاده از آزمون DSC، FTIR و تیتراسیون تأیید گردید. همچنین عدم سمیت ناشی از حضور مونومر آزاد توسط آزمون‌های کروماتوگرافی گازی، FTIR و درصد جامد اثبات گردید. جوهر‌های رسانا محتوی 52-74 درصد نانوذرات نقره (50-10 نانومتر)، با رزین به دست آمده تولید و با روش اسکرین چاپ شدند. جوهر Ag-59 % محتوی 59 درصد نقره در حالت خشک با داشتن مقاومت الکتریکی (Ω.cm) 7/0، پایداری عالی (بدون جدایش طی 60 روز)، چسبندگی B 5، گرانروی بهینه و دانه‌بندی زیر 10 میکرون، به‌عنوان جوهر بهینه انتخاب شد. نتایج SEM-EDX توزیع یکنواخت نانوذرات نقره در جوهر را تأیید کرد. این رزین آکریلیک می‌تواند پایه‌ای مؤثر برای تولید جوهر رسانای پایدار و کم‌سمیت با عملکرد الکتریکی مطلوب جهت جایگزینی قلع باشد.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Toxicity Reduction of Acrylic Resin by Eliminating Residual Free-Monomers for the Development of Silver Conductive Ink with Enhanced Stability

نویسنده [English]

  • Sahar Abdollahi Baghban
Department of Environmental Research, Institute for Color Science and Technology, P.O. Box: 16765- 654, Tehran, Iran
چکیده [English]

This study aimed to design a low-toxicity acrylic resin to develop a silver conductive ink for printing conductive circuits. A carboxylated-hydroxylated acrylic resin based on (meth)acrylate monomers was synthesized via a solution-free radical polymerization. The resin properties, a Tg: 40 °C, acid value: 8.2, and hydroxyl value: 56.6 mg KOH/g, were confirmed using DSC, FTIR, and titration analyses. Furthermore, gas chromatography, FTIR, and solid-content tests confirmed the absence of residual monomers to assess toxicity. Conductive inks containing 52-74 % silver nanoparticles (50-10 nm) were produced using the synthesized resin and applied via the screen method. The Ag-59 % ink, containing 59 % silver in the dry state, exhibiting a resistivity of 0.7 Ω.cm, excellent stability (no separation over 60 days), 5B crosscut adhesion, optimal viscosity, and a particle size of <10 µm, was selected as the optimized ink. SEM-EDX results confirmed the uniform distribution of silver nanoparticles within the dried ink. This acrylic resin can serve as an effective matrix for producing low-toxicity, stable, conductive ink with desirable electrical performance for tin-replacement applications.

کلیدواژه‌ها [English]

  • Silver Conductive Ink Toxicity from Residual Monomers Hydroxylated
  • Carboxylated Acrylic Resin Conductivity Printed Electronic Circuits
  1. MouY Y, Cheng H, Wang H, Sun Q, Liu J, Peng Y, et al. Facile preparation of stable reactive silver ink for highly conductive and flexible electrodes. Appl Surf Sci. 2019;475:75e82. https://doi.org/10.1016/j.apsusc.2018. 12. 261.
  2. Argento CW, Flynn TM. Photolithography applications for evaporative, plated, and printed wafer bumping interconnect technologies. Int J Microcircuits Electron. Packag. 1999; 22:152e156.
  3. Li J, Zhang X, Liu X, Liang Q, Liao G, Tang Z, Shi ZT. Conductivity and foldability enhancement of Ag patterns formed by PVAc modified Ag complex inks with low-temperature and rapid sintering. Mater Des. 2020;185:108255. https://doi.org/10.1016/j.matdes.2019. 108255.
  4. Dankoco MD, Tesfay GY, Benevent E, Bendahan M. Temperature sensor realized by inkjet printing process on flexible substrate. Mater Sci Eng B. 2016;205:1e5. https://doi.org/10.1016/j.mseb.2015.11.003. 
  5. Kwon HJ, Chung S, Jang J, Grigoropoulos CP. Laser direct writing and inkjet printing for a sub-2 mm channel length MoS2 transistor with high-resolution electrodes. Nanotechnol. 2016;27(40):405301. https://doi.org/10. 1088/0957-4484/27/40/ 405301.
  6. Benatto GADR, Roth B, Corazza M, Søndergaard RR, Gevorgyan SA, Jørgensen M, et al. Roll-to-roll printed silver nanowires for increased stability of flexible ITO-free organic solar cell modules. Nanoscale. 2016;8(1): 318e326. https://doi.org/10.1039/c5nr07426f.
  7. Gao Y, Liu R, Wang X, Liu J, Fang Q. Flexible RFID tag inductor printed by liquid metal ink printer and its characterization. J. Electron. Packag. 2016; 138 (3): 031007. https://doi.org/ 10.1115/1.4034062. 
  8. Wittbrodt B, Pearce JM. 3-D Printing Solar Photovoltaic Racking in Developing World. Energy Sustain. Dev. 2017;36:1-5. https://doi.org/10.1016/j.esd.2016.08.001.
  9. Tolvanen J, Hannu J, Jantunen H. Stretchable and washable strain sensor based on cracking structure for human motion monitoring. Sci Rep. 2018;8 (1):1-10. https://doi.org/10. 1038/s41598-018-31628-7.
  10. Kumar KS, Chen PY, Ren H, A review of printable flexible and stretchable tactile sensors, Research (2019) 3018568, https://doi. org/10.34133/2019/3018568.
  11. Du T, Tang C, Xing B, Lu Y, Huang F, Zuo C. Conductive ink prepared by microwave method: effect of silver content on the pattern conductivity. J Electron Mater. 2019;48(1):231-237. https://doi.org/10.1007/s11 664-018-6740-5.
  12. Zope KR, Cormier D, Williams SA. Reactive silver oxalate ink composition with enhanced curing conditions for flexible substrates. ACS Appl Mater Interfaces. 2018;10(4):3830-3837. https://doi.org/10.1021/acsami. 7b19161.
  13. Rosen Y, Marrach R, Gutkin V, Magdassi S. Thin copper flakes for conductive inks prepared by decom-position of copper formate and ultrafine wet milling. Adv Mater Technol. 2019;4(1):1800426. https://doi.org/ 10.1002/admt.201800426.
  14. Lai CY, Cheong CF, Mandeep JS, Abdullah HB, Amin N, Lai KW. Synthesis and characterization of silver nanoparticles and silver inks: review on the past and recent technology roadmaps. J Mater Eng Perform. 2014;23(10):3541-3550. https://doi.org/ 10.1007/s11665-014-1166-6.
  15. Sadat Fazayel A, Abdollahi Baghban S, Khorasani M. Insight into the rheological performance of plasticized-cement paste containing a tailored comb-shaped polycarboxylate superplasticizer: molecular architecture and functionalizing. J Dispers Sci Technol. 2025;47:1-17. https://doi.org/10.1080/ 01932691.2025.2452593
  16. Abdollahi Baghban S, Khorasani M. High Durable Latex-Modified-Concretes: The Effect of Minimum Film Formation Temperature of Acrylic-Styrene Latex. Prog Color Color Coat. 2023;16(2):181-195. https://doi.org/10.30509/pccc.2022.16699 6.1174
  17. Cano-Raya C, Denchev ZZ, Cruz SF, Viana JC. Chemistry of solid metal-based inks and pastes for printed electronics: A review. Appl Mater Today. 2019; 15:416-430. https://doi. org/10.1016/ j.apmt.2019.02.012.
  18. Walker SB, Lewis JA. Reactive silver inks for patterning high-conductivity features at mild temperatures. J Am Chem Soc. 2012;134(3):1419-1421. https://doi.org/10. 1021 /ja 209267c.
  19. Yang W, Wang C, Arrighi CV. Silver oxalate ink with low sintering temperature and good electrical property. J Electron Mater. 2018;47(5):2824-2835. https://doi.org/ 10.1007/s11664-018-6149-1.
  20. Jahn SF, Blaudeck T, Baumann RR, Jakob A, Ecorchard P, Rüffer T, Lang H, Schmidt P. Inkjet printing of conductive silver patterns by using the first aqueous particle-free MOD ink without additional stabilizing ligands. Chem Mater. 2010;22(10):3067-3071. https:// doi.org/10.1021/cm9036428.
  21. Cao L, Bai X, Lin Z, Zhang P, Deng S, Du X, Li W. The preparation of Ag nanoparticle and ink used for inkjet printing of paper based conductive patterns. Mater. 2017;10(9):1004. https://doi.org/10.3390/ma10091004.
  22. Ashayer-Soltani R, Hunt C, Thomas O. Fabrication of highly conductive stretchable textile with silver nano-particles. Textil Res J. 2016;86(10):1041-1049. https://doi.org/10.1177/004051 7515603813.
  23. Abdollahi Baghban S, Ebrahimi M, Khorasani M. A Facile Method to Synthesis of a Highly Acrylated Epoxidized Soybean Oil with Low Viscosity: Combined Experimental and Computational Approach. Polym Test. 2022;115:107727. https://doi.org/10.1016/j.polymertest ing. 2022.107727.
  24. Abdollahi Baghban S. A Theoretical and Practical Study of the Influence of (Met)acrylation on the Solubility Behavior of Radiation Curing Oligomers for Environ- mentally Friendly Coatings. Adv Mater New Coat. 2024;12(48):333-349. https://doi.org/10.22034/amnc. 2024. 485131.1275.
  25. Dong Y, Li X, Liu S, Zhu Q, Zhang M, Li JG, Sun X. Optimizing formulations of silver organic decomposition ink for producing highly-conductive features on flexible substrates: the case study of amines. Thin Solid Film. 2016;616:635-642. https://doi.org/10.1016/j.tsf.2016.09. 024.
  26. Abdollahi Baghban S, Ebrahimi M, Khorasani M, Bagheri-Khoulenjani S. Selfstratifying Behavior of a Novel Light-Curable Coating with Gradient Hydro-phobic Properties: Computational and Experimental Study. Prog Org Coat. 2021; 159:106435. https://doi.org/10.1016/j.porgcoat.2021. 106435.
  27. Shabanov N, Chiolerio A, Isaev A, Amirov A, Rabadanov K, Akhmedov A, Asvarov A. A water-soluble ink based on diamine silver (I) carbonate, ammonium formate, and polyols for inkjet printing of conductive patterns. Eur J Inorg Chem. 2019;2:178-182. https://doi.org/10.1002/ ejic.201801045.
  28. Wang DY, Chang Y, Wang YX, Zhang Q, Yang Z G, Green water-based silver nanoplate conductive ink for flexible printed circuit. Mater. Technol. 2016;31(1):32-37. https://doi.org/ 10.1179/1753555715Y.0000000023.
  29. Abdollahi Baghban S, Ebrahimi M, Khorasani M, Bagheri-Khoulenjani S. Tailoring a variety of self-stratifying patterns in a light-curable coating on the substrates with different surface free energies. Prog Org Coat. 2022;171:107023. https://doi. org/10.1016/j.por gcoat. 2022.107023
  30. Abdollahi Baghban S, A Review on the Renewable Oligomers and Monomers for Preparation of the Radiation Coatings. J. Stud. Color World. 2019;8(4):51-57. https://dor.isc.ac/dor/20. 1001. 1.22517278.1397.8.4. 6.9
  31. Abdollahi Baghban S, Ebrahimi M, Khorasani M, Bagheri-Khoulenjani S. Design of different self-stratifying patterns in a VOC-free light-curable coating containing bio-renewable materials: Study on formu-lation and processing conditions. Prog Org Coat. 2021;161:106519. https://doi.org/10. 1016/j .porgcoat.2021.10 6519.
  32. Abdollahi Baghban S, Rad R. The Developed Trends in Powder Coatings Technology. Iran J Polym Sci Technol. 2023; 36(1):23-46. https://doi.org/10.22063/jipst.2023 3331. 2212. 
  33. Yadav VD, Jain R, Dandekar P. Influence of sodium hydroxide in enhancing the surface plasmon resonance of silver nanoparticles. Mater Res Express. 2017;4 (8): 085015. https://doi.org/10.1088/2053-1591/aa8088.
  34. Choi JH, Lee SW, Jeong JH, Choi DG, Lee JH, Lee ES. Direct imprinted conductive patterns using nanosilver colloid applied UV curable resist. Jpn J Appl Phys. 2009;48(6S):06FH02. https://doi.org/10.1143/JJAP.48. 06FH02.
  35. Rosati G, Ravarotto M, Scaramuzza M, Toni AD, Paccagnella A. Silver nanoparticles inkjet-printed flexible biosensor for rapid label-free antibiotic detection in milk, Sensor. Actuator B Chem. 2019; 280: 280-289. https://doi.org/10.1016/j.snb.2018. 09.084.
  36. Zou Zh, Zhu Ch, Li Y, Lei X,  Zhang W. Rehealable, fully recyclable, and malleable electronic skin enabled by dynamic covalent thermoset nano-composite. Sci adv. 2018;4(2):eaaq 0508. https://doi.org/10. 1126/ sciadv.aaq0508.
  37. Roy, Bulut O, Some S, Mandal AK, Yilmaz MD. Green synthesis of silver nanoparticles: biomolecule-nanoparticle organizations targeting antimicrobial activity. RSC Adv. 2019; 9 (5): 2673e2702. https://doi.org/10.1039/c8ra08982e.
  38. Abdollahi Baghban S. A Large‐Scale Study Toward a Hybrid Treatment Approach for High‐Strength Polyester Wastewater: A Computational and Experimental Study. J Appl Polym Sci. e57565. https://doi.org/10. 1002/app. 57565
  39. Sadat Fazayel A, Abdollahi Baghban S, Khorasani M, Eivaz Mohammadloo H. Tailoring polycarboxylate copolymers as high-performance green corrosion inhibitors: The synergistic interplay of functional groups, composition, and counterions. Colloids Surf. A: Physico-chem. Eng Asp. 2026;728(2):138683. https://doi.org/ 10.1016/j.colsurfa.2025.138683.
  40. Abdollahi Baghban S, Khorasani M, Mir Mohamad Sadeghi G. Soundproofing Flexible Polyurethane Foams: The Impact of Polyester Chemical Structure on the Microphase Separation and Acoustic Damping. J Appl Polym Sci. 2018;135 (46): 46744. https://doi.org/ 10.1002/app.46744.