بهینه‌‌یابی روش اندازه‌‌گیری محتوای روی در پوشش‌‌های اپوکسی غنی از روی با استفاده از دستگاه گرماسنجی روبشی تفاضلی

نوع مقاله : مقاله پژوهشی

نویسندگان

1 گروه پژوهشی محیط زیست و رنگ، پژوهشکده مواد رنگزا، پژوهشگاه رنگ، تهران، ایران، صندوق‌پستی: 654-167654

2 گروه پژوهشی پوشش‌های سطح و خوردگی، پژوهشکده پوشش‌های سطح و فناوری‌های نوین، پژوهشگاه رنگ، تهران، ایران، صندوق‌پستی: 654-167654

10.30509/jcst.2025.167660.1270

چکیده

عملکرد پوشش‌های غنی از روی که به‌طور گسترده به‌عنوان آستر برای حفاظت کاتدی از سازه‌های فولادی در برابر خوردگی استفاده می‌شوند، به محتوای روی در فیلم خشک وابسته است. هدف از این مطالعه، بهینه‌یابی روش اندازه‌گیری محتوای روی در پوشش‌های اپوکسی-پلی‌آمید غنی از روی با استفاده از روش گرماسنجی روبشی تفاضلی (DSC) مطابق با استاندارد ASTM D6580 است. دو پوشش با محتوای 80 و ۸۵ درصد وزنی روی ساخته شدند و روش نمونه‌برداری از فیلم خشک پوشش (تراشیدن-آسیاب‌‌کردن از روی شیشه) و فیلم آزاد جداشده از سطح پلی‌پروپیلن) به‌عنوان یک عامل کلیدی مورد بررسی قرارگرفت. مقادیر روی برای پوشش ۸۵ درصد از طریق فیلم آزاد و پودر آسیاب‌شده به‌ترتیب 01/85 و 78/78 درصد و برای پوشش ۸۰ درصد به‌ترتیب 19/80 و 70/73 درصد به‌‌دست ‌‌آمد. نتایج حاصل از نمونه‌های فیلم آزاد انحراف معیار کم‌تری نشان‌‌داده و به مقادیر واقعی فرمول‌بندی نزدیک‌تر بودند. این اختلاف عمدتا ناشی از ته‌نشینی ذرات روی، نایکنواختی و اکسایش احتمالی نمونه انتخاب ‌‌شده برای آزمون DSC نسبت‌‌ داده ‌‌شد. از این رو استفاده از فیلم آزاد برای اندازه‌‌گیری محتوای روی با استفاده از DSC پیشنهاد می‌گردد.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Optimization of the Measurement Method for Zinc Content in Zinc-Rich Epoxy Coatings Using Differential Scanning Calorimetry

نویسندگان [English]

  • Sahar Abdollahi Baghban 1
  • Shadi Montazeri 2
1 Department of Environmental Research, Dyes and Pigments Faculty, Institute for Color Science and Technology, P.O. Box: 16765-654, Tehran, Iran
2 Department of Surface Coating and Corrosion, Surface Coating and Novel Technologies Faculty, Institute for Color Science and Technology, P.O. Box: 16765-654, Tehran, Iran
چکیده [English]

The performance of zinc-rich coatings, widely used as primers for cathodic protection of steel structures against corrosion, depends on their zinc content in the dry film. This study aimed to optimize the method for measuring zinc content in zinc-rich epoxy-polyamide coatings using Differential Scanning Calorimetry (DSC) in accordance with ASTM D6580. Two coatings with zinc contents of 80% and 85% by weight were prepared, and sampling methods from the dry coating film (scraping-grinding from glass vs. free-film detached from polypropylene surface) were investigated as key factors. The measured zinc contents for the 85 % coating were 85.01 and 78.78 % for the free-film and ground powder methods, respectively, while for the 80% coating, the values were 80.19 and 73.70 %, respectively. Results from free-film samples showed lower standard deviation and were closer to the actual formulation values. This discrepancy was mainly attributed to the settling of zinc particles, oxidation probability, and the inhomogeneity of the samples selected for DSC testing. Therefore, using free films is recommended for measuring zinc content via DSC analysis.

کلیدواژه‌ها [English]

  • Zinc
  • rich coating Differential Scanning Calorimetry (DSC) Zinc content measurement Measurement error reduction Free
  • film
  1. Emamgholi Kh, Moradi Dehghani Sh, Ranjbar Z, Motiee F. The effect of aminated graphene oxide nanocomposite based on benzidine-zinc oxide on the corrosion resistance of cathode electrocoatings. J Color Sci. Tech. 2023;17(2):159-167. https://dor.isc.ac/dor/20.1001.1.17358779.1402.17.2.5.6 
  2. Abdollahi Baghban S, Khorasani M. High Durable Latex-Modified-Concretes: The Effect of Minimum Film Formation Temperature of Acrylic-Styrene Latex. Prog Color Color Coat. 2023;16(2):181-195. https://doi.org/10. 30509/pccc.2022.166996.1174
  3. Sadat Fazayel A, Abdollahi Baghban S, Khorasani M. Insight into the rheological performance of plasticized-cement paste containing a tailored comb-shaped polycarboxylate superplasticizers: molecular architecture and functionalizing. J Dispers Sci. Technol. 2025;1–17. https://doi.org/10.1080/01932691.2025.2452593
  4. Abdollahi Baghban S, Khorasani M. Construction and characterization of polymer concrete containing waterborne acrylic resin with low permeability to chlorine and water ions. Concr. Res. 2019;12(2):19-32. https://doi.org/10. 22124/jcr.2019.11300.1315.
  5. Sadat Fazayel A, Abdollahi Baghban S, Khorasani M, Eivaz Mohammadloo H. Tailoring polycarboxylate copolymers as high-performance green corrosion inhibitors: The synergistic interplay of functional groups, composition, and coun-terions. Colloid. Surf. Physicochem. Eng Asp. 2026; 728 (2):138683. https://doi.org/10.1016/j.colsurfa.2025.138683. 
  6. Shchukin DG, Lamaka SV, Yasakau KA, Zheludkevich ML, Ferreira MGS, Möhwald H. Active anticorrosion coatings with halloysite nanocontainers. J Phys Chem C. 2008;112: 958–964. https://doi.org/10.1021/jp076188r.
  7. Montazeri S, Ranjbar Z, Rastegar S. A study on effects of viscoelastic properties on protective performance of epoxy coatings using EIS. Prog Org Coat. 2017;111:248–257. https://doi.org/10.1016/j.porgcoat.2017.06.007. 
  8. Kalendová A. Effects of particle sizes and shapes of zinc metal on the properties of anticorrosive coatings. Prog Org Coat. 2003;46: 324–332. https://doi.org/10.1016/S0300-9440(03)00022-5. 
  9. Kuang D, Cheng YF. Study of Cathodic Protection Shielding under Coating Disbondment on Pipelines. Corros Sci. 2015;99:1–9. http://dx.doi.org/10.1016/j.corsci.2015. 07.012. 
  10.  Khalid Hussain A, Seetharamaiah N, Pichumani M, Shilpa Chakra Ch. Research progress in organic zinc-rich primer coatings for cathodic protection of metals – A compre-hensive review. Prog Org Coat. 2021;153:106040. https://doi.org/10.1016/j.porgcoat.2020.106040.
  11.  Qi Ch, Dam-Johansen K, Erik Weinell C, Bi H, Wu H. Enhanced anticorrosion performance of zinc-rich epoxy coatings modified with stainless steel flakes. Prog. Org. Coat. 2022;163:106616. https://doi.org/10.1016/j.porgcoat. 2021.106616.
  12.  Li Z, Bi H, Erik Weinell C, Ravenni G, Benedini L, Dam-Johansen K. Investigation of zinc epoxy coatings modified with pyrolyzed and gasified biochar nanoparticles for corrosion protection. Prog Org Coat. 2023;178:107477, https://doi.org/10.1016/j.porgcoat.2023.107477  
  13.  ASTM D 6580–00, Standard Test Method for The Determination of Metallic Zinc Content in Both Zinc Dust Pigment and in Cured Films of Zinc-Rich Coatings