بررسی میزان تطابق رنگ در بن‌سازه‌های تجارت الکترونیک

نوع مقاله : مقاله پژوهشی

نویسندگان

گروه پژوهشی نمایش رنگ و پردازش تصویر، پژوهشگاه رنگ، تهران، ایران، صندوق پستی: 654-16765

10.30509/jcst.2025.167619.1269

چکیده

این پژوهش عدم تطابق رنگ را در بن‌سازه‌های تجارت الکترونیک با استفاده از کارت رنگ استاندارد و شرایط مشاهده شبیه‌سازی‌شده روی دو نمایشگر مختلف بررسی می‌کند. تصاویر محصولات با یک دوربین گوشی هوشمند تحت نور استاندارد D65 ثبت گردیدند و سپس روی نمایشگرهای Samsung SyncMaster P20500 (نمایشگر مصرفی) و EIZO CG243W (نمایشگر حرفه‌ای) نمایش داده شدند. اختلاف رنگ بین رنگ واقعی نمونه‌ها و رنگ نمایش‌داده‌شده با طیف‌سنج اندازه‌گیری و بر اساس فرمول ΔE2000 گزارش شد. نتایج نشان داد که میانگین اختلاف رنگ می‌تواند تا ۸ واحد برسد. این مقدار به‌وضوح از آستانه ادراک انسانی فراتر است و ممکن است منجر به نارضایتی مشتری شود. حتی پس از حذف خطاهای ناشی از عکاسی، اختلاف رنگ در برخی رنگ‌ها به‌ویژه رنگ‌های اشباع و تیره همچنان قابل‌توجه باقی ماند. نمایشگر EIZO به‌دلیل واسنجی دقیق‌تر و گستره رنگی بیشتر، عملکرد بهتری از خود نشان داد.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Investigating Color Consistency in E-Commerce Platforms

نویسندگان [English]

  • Meysam Araghi
  • Mahdi Safi
  • Alireza Mahmoodi Nahavandi
Department of Color Imaging and Color Image Processing, Institute for Color Science and Technology, P.O. Box: 16765- 654, Iran
چکیده [English]

This study investigates color inconsistency on e-commerce platforms using the ColorChecker SG chart and simulated viewing conditions across two distinct displays. Product images were captured with a smartphone camera under standardized D65 illumination and displayed on a consumer-grade Samsung SyncMaster P20500 monitor and a professional-grade EIZO CG243W monitor. Color differences between the physical reference samples and their on-screen representations were measured using a spectrophotometer and quantified using the CIEDE2000 (ΔE2000) formula. The results showed that the average color difference could reach up to 8 units. This value clearly exceeds the human perceptual threshold and may lead to customer dissatisfaction. Even after accounting for camera-related errors, significant discrepancies persisted, particularly for saturated and dark hues. The EIZO monitor demonstrated superior color reproduction due to its factory calibration, wider color gamut, and higher color fidelity.

کلیدواژه‌ها [English]

  • Color consistency E
  • commerce Visual Perception Color difference Digital Display Classic color chart
  1. Parker KR, Nitse PS, Tay SMA. The impact of inaccurate color on customer retention and CRM. Informing Sci. 2009;12:105–122. https://doi.org/10. 28945/3333.
  2. Gao Q, Hu H, Liu W. E-commerce image enhancement method based on instance segmentation and background replacement. IEEE Access. 2024. https://doi.org/10.1109/ACCESS. 2024. 1234567.
  3. Nitse PS, Parker KR, Krumwiede D, Ottaway T. The impact of color in the e-commerce marketing of fashions: an exploratory study. Eur J Mark. 2004;38(7):898-915. https://doi.org/10.1108/ 03090560410539311.
  4. Park J, Lennon SJ, Stoel L. Online product presentation: Effects on mood, perceived risk, and purchase intention. Psychol Mark. 2005;22(9):695–719. https://doi.org/10.1002/mar.20080.
  5. Kim J, Forsythe S. Adoption of virtual try-on technology for online apparel shopping. J Interact Mark. 2008;22(2):45–59. https://doi.org/10.1002/dir.20113.
  6. Harsojo J, Lazaria E, Chesio A, Incra T. The aspects of online clothing store photo product which affect consumer decision making. Indones Bus Rev. 2022;5(1):1-22. https://doi.org/10. 21632/ibr.5.1.1.
  7. Kim M, Lennon SJ. The effects of visual and verbal information on attitudes and purchase intentions in internet shopping. Psychol Mark. 2008;25(2):146–178. https://doi.org/10.1002/ mar. 20204.
  8. Ebner F, Fairchild MD. Development and testing of a color space (IPT) with improved hue uniformity. In: Color and Imaging Conference. 1998. Soc Imaging Sci Technol.
  9. Schanda J, Csuti P, Szabó F. Colour fidelity for picture gallery illumination, Part 1: Determining the optimum light-emitting diode spectrum. Light Res Technol. 2015;47(5):513–521. https://doi.org/10.1177/1477153514526792.
  10. Jiang J, Liu D, Gu J, Süsstrunk S. What is the space of spectral sensitivity functions for digital color cameras? In: 2013 IEEE Workshop on Applications of Computer Vision (WACV). 2013. IEEE. https://doi.org/10.1109/WACV.2013.6475053.
  11. . Burggraaff O, Schmidt N, Zamorano J, Pauly K, Pascual S, Tapia C, et al. Standardized spectral and radiometric calibration of consumer cameras. Opt Express. 2019;27(14):19075-19101. https://doi.org/10.1364/OE.27.019075.
  12. Afifi M, Brubaker MA, Brown MS. Auto white-balance correction for mixed-illuminant scenes. In: IEEE/CVF Winter Conference on Applications of Computer Vision. 2022. https://doi.org/10.1109/WACV51468.2022.00123.
  13. Li J, Wang XX, Liu H. Auto white balance algorithm in digital camera. Appl Mech Mater. 2012;182:2080–2084. https://doi. org/10.4028/www.scientific.net/AMM.182.2080.
  14. Buzzelli M, Zini S, Bianco S, Ciocca G, Schettini R, Tchobanou MK. Analysis of biases in automatic white balance datasets and methods. Color Res Appl. 2023;48(1):40-62. https://doi.org/10.1002/col.22893.
  15. Semenza P. Can MicroLEDs and quantum dots revitalize inorganic displays? Inf Disp. 2018;34(6):23-31. https://doi.org/ 10.1002/id.21834.
  16. Abu Haila T, Kunst K, Khanh TQ, Wallis TS. Recent consumer OLED monitors can be suitable for vision science. arXiv e-prints. 2024. https://doi.org/10.48550/arXiv.2410.17019.
  17. Boher P, Leroux T, Bignon T, Blanc P. Color display evaluation vs. viewing angle using L* a* b* color space and Fourier-optics measurements. J Inf Disp. 2011;12(4):179-190.
  18. Zhao B, Xu Q, Luo MR. Color difference evaluation for wide-color-gamut displays. J Opt Soc Am A. 2020;37(8):1257–1265. https://doi.org/10.1364/JOSAA.37.001257.
  19. Rasouli A, Tsotsos JK. The effect of color space selection on detectability and discriminability of colored objects. arXiv preprint. 2017. https://doi.org/10.48550/arXiv.1702.05421.
  20. Perez MM, Ghinea R, Herrera LJ, Carrillo F, Ionescu AM, Paravina RD. Color difference thresholds for computer-simulated human gingiva. J Esthet Restor Dent. 2018;30(2): E24–E30. https://doi.org/10.1111/jerd.12373
  21. Xu H, Yaguchi H. Visual evaluation at scale of threshold to suprathreshold color difference. Color Res Appl. 2005; 30(3):198-208. https://doi.org/10.1002/col.20091.
  22. Kirchner E, van Wijk C, van Beek H, Koster T. Exploring the limits of color accuracy in technical photography. Herit Sci. 2021;9(1):57. https://doi.org/10.1186/s40494-021-00616-6
  23. Varghese D, Wanat R, Mantiuk R. Colorimetric calibration of high dynamic range images with a ColorChecker chart. In: Int Conf and SME Workshop on HDR Imaging 2014. 2014.
  24. Ahtik J. Comparison of ICC and DNG colour profile workflows based on colorimetric accuracy. J Print Media Technol Res. 2017;6(3):115-121.
  25. Safi M, Soleymanian T, Ansari K, Benezeth Y. Measuring CMCCON02 color inconstancy index: Using digital camera as a substitute for spectrophotometer. In: 8th Int Conf on Signal, Image Processing and Pattern Recognition (SPPR 2019). 2019;175-181.
  26. Sato T, Takada N, Ueda M, Nakamura T, Luo MR. Comparison of instrumental methods for assessing colour fastness. Part 1: Change in colour. J Soc Dyers Colour. 1997;113(1):17–24. https://doi.org/10.1111/j.1478-4408.1997.tb01841.x.
  27. ISO 105-A05:1996/Cor 2:2005. Textiles-Tests for colour fastness-Part A05: Instrumental assessment of change in colour for determination of grey scale rating.
  28. Luo MR, Cui G, Rigg B. The development of the CIE 2000 colour-difference formula: CIEDE2000. Color Res Appl. 2001;26(5):340-350. https://doi.org/10.1002/col.1049.
  29. Khashayar G, Bain PA, Salari S, Dozic A, Kleverlaan CJ, Feilzer AJ. Perceptibility and acceptability thresholds for colour differences in dentistry. J Dent. 2014;42(6):637-644. https://doi. org/10.1016/j.jdent.2013.11.017
  30. Kim AR, Kim HS, Park SO. Measuring of the perceptibility and acceptability in various color quality measures. J Opt Soc Korea. 2011;15:310-317. https://doi.org/10.3807/JOSK.2011. 15.3.310.
  31. Jafari R, Safi M. Determining tolerance values of instrumentally measured color differences to evaluate black filament yarns. Prog Color Colorants Coatings. 2020;13(3):187–197. https://doi. org/10.30509/pccc.2020.81628.
  32. Berns RS. Deriving instrumental tolerances from pass-fail and colorimetric data. Color Res Appl. 1996;21:459-472. https://doi. org/10.1002/(SICI)1520-6378(199612)21:6.
  33. Shiri AH, Jafari R, Hosseinzadeh M. Review on color gamut and methods for describing its boundaries. Stud Color World. 2022;12(1):21-35