سازوکار جذب رنگزاهای اسیدی بر روی نخ ابریشمی اصلاح شده با نانوساختار بتاسایکلودکسترین

نوع مقاله : مقاله پژوهشی

نویسندگان

1 گروه پژوهشی هنرهای سنتی، پژوهشگاه میراث فرهنگی و گردشگری، تهران، ایران. صندوق پستی: 11167-13437

2 دانشکده مهندسی نساجی، دانشگاه صنعتی امیرکبیر، تهران، ایران. صندوق پستی: 4413-15875

چکیده

در این پژوهش، نخ ابریشمی صمغ­گیری شده با نانوساختار بتاسایکلودکسترین (β-CD) توسط اتصال دهنده دو عامله سوکسینیک‌اسید (SUA) اصلاح شد. سپس، نمونه­های ابریشمی اصلاح شده با سه رنگزای اسیدی با وزن و ساختارهای شیمیایی متفاوت به روش­های متداول (در حضور اسید) و غیرمتداول (بدون حضور اسید) رنگرزی شدند. برای ارزیابی فرایند اصلاح سطح و تشکیل کمپلکس در هم جای از آنالیزهای شناخته شده فروسرخ تبدیل فوریه (FTIR)، بازتاب کلی ضعیف شده- فروسرخ تبدیل فوریه (ATR-FTIR)، میکروسکوپ الکترون روبشی (SEM)، پراش پرتو ایکس (XRD) و طیف­سنجی مرئی فرابنفش (UV-Visible) استفاده شده است. نتایج نشان می­دهد که حضور بتاسایکلودکسترین به بهبود جذب رنگزاها کمک قابل­توجهی نموده است و نقش اسید نیز بر سازوکار جذب ماده رنگزا بسیار موثر است. بهبود جذب رنگزا می‌تواند مربوط به اتصالات شیمیایی (یونی و هیدروژنی) و فیزیکی (تشکیل کمپلکس در هم جای و حبس فیزیکی در شبکه پلیمری سه‌بعدی) باشد. به‌علاوه، حضور بتاسایکلودکسترین نیز بر روی ثبات­های عمومی رنگی (شستشویی، نوری و سایشی) تاثیر منفی نداشته است، بنابراین، ثبات­های رنگی اغلب نمونه­ها بدون تغییر باقی‌مانده و یا کاهشی را نشان نمی­دهند.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Mechanism of Acid Dyes Adsorption on Silk Yarn Modified with β-Cyclodextrin Nanostructure

نویسندگان [English]

  • Samera Salimpour Abkenar 1
  • Reza Mohammad Ali Malek 2
  • Negar Daeichini 2
1 Research Group of Traditional Arts, Research Institute of Cultural Heritage and Tourism (RICHT), P. O. Box: 1343711167, Tehran, Iran
2 Department of Textile Engineering, Amirkabir University of Technology, P. O. Box: 158754413, Tehran, Iran
چکیده [English]

This research modified the degummed silk yarn with β-cyclodextrin (β-CD) using Succinic acid (SUA). Then, the modified silk yarn was dyed with three different acid dyes through usual (with acid) and unusual (without acid) methods. The surface modification and inclusion complex were characterized by well-known analyses such as Fourier transform infrared (FTIR), attenuated total reflectance-FTIR (ATR-FTIR), Scanning electron microscope (SEM), X-ray diffraction (XRD), and UV-visible. Results show that the presence of the β-CD has markedly enhanced the dye adsorption, and also, the acid has an effective role in the dye adsorption mechanism. The improvement of dye adsorption can be related to chemical (H-bonding and ionic) and physical (inclusion complex and encapsulation into tridimensional polymeric network) interactions. In addition, the β-CD had no negative effect on the color fastness (wash, light, and rubber) of the modified silk samples, so the color fastness of most samples remained unchanged or did not show a noticeable decrease.

کلیدواژه‌ها [English]

  • β
  • Cyclodextrin nanostructure Silk Inclusion complex Acid dyes
  1. Cooper EK. Silk worms and science: The story of silk. 1st. ed. New York: Harcourt, Brace & World; 1961.
  2. Sadov FI, Korchagin MV, Matetsky A. Chemical technology of fibrous materials. Moscow: Mir; 1978.
  3. Tomlinson FS. The dyeing of natural silk and R. J Soc Dye Color. 1936; 52(10): 373-378. https://doi.org/10.1111/j.1478-4408.1936.tb01895.x.
  4. Thomson A. The dyeing of natural silk. J Soc Dye Color. 1928; 44 (7): 202-205. https://doi.org/10.1111/j.1478-4408. 1928.tb01504.x.
  5. Keyworth CM. Silk dyeing. J. Soc. Dye. Color. 1933; 49 (8): 245-250. https://doi.org/10.1111/j.1478-4408.1933.tb01765.x.
  6. Shahidi SH, Wiener J, Ghoranneviss M. Surface modification methods for improving the dye ability of textile fabrics. In: Gunay M. (Ed.) Eco-friendly textile dyeing and finishing. Rijeka: IntechOpen; 2013.
  7. Bendak W, Raslan M. Pretreatment of Protein and Synthetic Fibers Prior to Dyeing. In: Hauser P. (Ed.) Textile dyeing. Rijeka: IntechOpen; 2013. 
  8. Salimpour Abkenar S, Malek RMA, Mazahgeri F. Salt-free dyeing isotherms of cotton fabric grafted with PPI dendrimers. Cellulose, 2015; 22 (1): 897-910. https://doi.org/10.1007/ s10570-014-0534-6.
  9. Liu L, Zhang S, Huang JY. Progress in modification of silk fibroin Fiber. Sci. China: Technol Sci. 2019; 62 (6), 919-930. https://doi.org/ 10.1007/s11431-018-9508-3.
  10. El Sayed SS, El Naggar AA, Ibrahim SM. Gamma irradiation induced surface modification of silk fabrics for antibacterial application. J Part Sci Technol. 2017; 3 (2), 71-77. https://doi. org/10.22104/JPST.2017.2090.1074.
  11. Szejtli J. Introduction and General Overview of Cyclodextrin Chemistry. Chem. Rev. 1998; 98 (5):1743−1753. https://doi. org/10.1021/cr970022c.
  12. Vonica B. Vivod V. Cyclodextrins in textile finishing. In: Gunay M. (Ed.) Eco-friendly textile dyeing and finishing. Rijeka: IntechOpen; 2013.
  13. Zare A. β-Cyclodextrin as dispersing agent in the dyeing of polyester-viscose fabrics. J Color Sci Tech. 2023; 16 (4): 281-292. https://dor.org/ 20.1001.1.17358779.1401.16.4.1.9.
  14. Bezerra FM, Lis MJ, Firmino HB, Dias da Silva JG, Valle RCSC, Valle JAB, et al. The role of β-Cyclodextrin in the textile industry-Review. Molecules, 2020; 25 (16): 3624-3652. https://doi.org/ 10.3390/molecules25163624.
  15. Martel B. Weltrowski M. Ruffin D. Morcellet M. Polycarboxylic acids as crosslinking agents for grafting cyclodextrins onto cotton and wool fabrics: Study of the process parameters. J Appl Poly Sci. 2001; 83 (7): 1449–1456. https://doi.org/10.1002/app.2306.
  16. Vonica B, Le Marechal AM. Grafting of cotton with β-cyclodextrin via poly (carboxylic acid). J. Appl. Polym Sci. 2005; 96 (4):1323-1328. https://doi.org/10.1002/app.21442.
  17. Yang CQ, Wang X. Infrared spectroscopy studies of the cyclic anhydride as the intermediate for the ester crosslinking of cotton cellulose by polycarboxylic acids. II. Comparison of different polycarboxylic acids. J Polym Sci. 1996; 34(8): 1573-1580.https://doi.org/10.1002/(SICI)1099-0518 (199606) 34:8<1573::AID-POLA22>3.0.CO;2-4.
  18. Salimpour Abkenar S, Malek RMA. Modification of silk yarn with β-Cyclodextrin nanoparticles: Preparation, characterization, and natural dyeing properties. Starch, 2021; 73 (7-8): 200209 (1-15). https://doi.org/10.1002/ star. 202000209.
  19. Salimpour Abkenar S, Malek RMA. A study on dye inclusion complex, adsorption, and kinetic of silk floss sheet modified with β-Cyclodextrin as a biodegradable adsorbent. Starch, 2022; 74 (9-10): 2200059 (1-12). https://doi.org/10. 1002/star.202200059.
  20. Rehan M. Mahmoud S. Mashaly H, Youssef B. β-Cyclodextrin assisted simultaneous preparation and dyeing acid dyes onto cotton fabric. React. Funct Polym. 2020; 151 (104573): 1–28. https://doi.org/10.1016/j.reactfunctpolym. 2020. 104573.
  21. Feiz M, Salimpour Abkenar S. Improvement in wash fastness of dyed silk by after treatment with commercial syntan/metal salts. Prog Color Color Coat. 2008; 1(1):27-36. https://doi.org/ 10.30509/PCCC.2008.75705.
  22. Teli MD. Advances in the dyeing and printing of silk. Sawston: Institute of Chemical Technology (ICT); 2015.
  23. Dodziuk H. Cyclodextrins and their complexes: Chemistry, analytical methods, applications, 1th ed. Weinheim: Wiley-VCH Publishing; 2006.
  24. Martel B, Morcellet M, Ruffin D, Ducoroy L, Weltrowski M. Finishing of polyester fabrics with cyclodextrins and polycarboxylic acids as crosslinking agents. J. Incl. Phenom. Macrocycl. Chem. 2002; 44 (2): 443-446. https://doi.org/ 10.1023/A:1023080221850.
  25. El Ghoul Y, Martel B, El Achari A, Campagne C, Razafimahefa L. Vroman I. Improved dye ability of polypropylene fabrics finished with β-cyclodextrin–citric acid polymer. Polym. J. 2010; 42 (10): 804-811. https://doi.org/ 10.1038/pj.2010.80.
  26. Pavia GS, Lampman, DL, Kriz GM. Introduction to spectroscopy: A guide for students of organic chemistry (Saunders golden sunburst series). 2 nd. ed. Philadelphia: W.B. Saunders Company; 1987.
  27. Bonini M, Rossi S. Karlsson G, Almgren M,  Nostro P, Baglioni P. Self-assembly of β-cyclodextrin in water. Part 1:  Cryo-TEM and dynamic and static light scattering. Langmuir, 2006; 22 (4): 1478- 1484. https://doi.org/10.1021/la052878f.
  28. Rotich MK, Brown ME, Glass BD. Thermal studies on mixtures of amino salicylic acids with cyclodextrins. J. Therm. Anal. Calorim. 2003, 73 (2), 687-706. https://doi.org/ 10.1023/A: 1025454818939.
  29. Bhat NV, Nadiger GS, Paralikar KM, Betrabet SM. Electron diffraction studies on Indian silk. J. Appl. Polym. 1980; 25 (4): 635-640. https://doi.org/10.1002/app.1980.070250410.
  30. Bhat NV, Nadiger GS. Crystallinity in silk fibers: Partial acid hydrolysis and related studies. J. Appl. Polym. 1980; Sci. 25 (5): 921-932. https://doi.org/10.1002/app.1980.070250518.
  31. Abarca RL, Rodriguez FJ, Guarda A, Galotto MJ, Bruna JE. Characterization of beta-cyclodextrin inclusion complexes containing an essential oil component. Food Chem. 2016; 196 (1): 968-975. https://doi.org/10.1016/j.foodchem.2015.10.023.
  32. Kelemen H, Hancu G, Gaz Florea SA, Nemes Nagi E, Papp LA. Characteriation of inclusion complexes between miconazole and different cyclodextrin derivatives. Acta Med. Marisiensis, 2018; 64 (2): 70-76. https://doi.org/10.2478/ amma-2018-0012.
  33. Sambasevam KP, Mohamad SH, Sarih NM, Smail NA. Synthesis and characterization of the inclusion complex of β-cyclodextrin and azomethine. Int J Mol Sci. 2013; 14 (2): 3671-3682. https://doi.org/10.3390/ijms14023671.
  34. Bezerra FM, Corte DSC, Plath A, Firmino HB, Lima MA, Lis M, et al. β-Cyclodextrin: Disperse yellow 211 complexes improve coloristic intensity of polyamide dyed knits. Tex Res J. 2022; 92 (13-14): 2194-2204. https://doi.org/ 10.1177/ 00405175211022624.
  35. Shao Y, Martel B, Morcellet M, Weltrowski M. Interaction between beta-cyclodextrin water-soluble dyes. Can Tex J. 1996; 97: 53-58.
  36. Kan CW. Influence of water hardness on acid dyeing with silk. Fibers Polym. 2008; 9 (3), 317-322. https://doi.org/ 10.1007/s12221-008-0051-z.
  37. Ershov YA, Kirchevskii GE. Light stability of dyed fibers. Tex. Res. J. 1975; 45 (3); 187-199. https://doi.org/ 10. 1177/004051757504500301.