سنتز، مشخصه‌یابی و خواص جذبی نانوکامپوزیت‌های مغناطیسی (M: Mg, Mn, Ni) Polyaniline@MFe2O4

نوع مقاله : مقاله پژوهشی

نویسندگان

1 گروه علوم پایه، دانشکده فنی مهندسی گلپایگان، دانشگاه صنعتی اصفهان، گلپایگان، ایران، صندوق پستی: 67498-87717

2 مرکز تحقیقات مواد اولیه دارویی، دانشگاه علوم پزشکی تهران، دانشگاه آزاد اسلامی، تهران، ایران، کد پستی: 1941933111

3 گروه شیمی دارویی، دانشکده شیمی دارویی، دانشگاه علوم پزشکی تهران، دانشگاه آزاد اسلامی، تهران، ایران، کد پستی: 1913674711

4 گروه شیمی کاربردی، دانشکده شیمی دارویی، دانشگاه علوم پزشکی تهران، دانشگاه آزاد اسلامی، تهران، ایران، کد پستی: 1913674711

چکیده

در این مقاله از سه جاذب مغناطیسی شامل polyaniline@NiFe2O4، polyaniline@MgFe2O4 و polyaniline@MnFe2O4 به منظور حذف آلاینده‌ی رنگی قرمز کنگو استفاده شده است. نانوجاذب‌های سنتز شده توسط روش‌های مختلفی از جمله میکروسکوپ الکترونی روبشی، پراش اشعه ایکس، پراش انرژی پرتو ایکس و طیف‌سنجی زیر قرمز شناسایی شدند. سپس عوامل موثر بر بازده حذف قرمز کنگو در مورد هر سه جاذب بهینه‌سازی شد. در شرایط بهینه بازده حذف قرمز کنگو از محیط آبی توسط polyaniline@MgFe2O4، polyaniline@MnFe2O4 و polyaniline@NiFe2O4، به ترتیب برابر با 92، 90 و 89 درصد محاسبه شد. امکان احیا و بازیابی نانوکامپوزیت‌های مورد استفاده بررسی شد و اسیدکلریدریک 1 مولار به عنوان عامل بازیابی‌کننده توانست تا 4 مرتبه هر سه نانوکامپوزیت را بازیابی کند. حذف قرمز کنگو از نمونه‌های حقیقی شامل آب چاه و پساب رنگرزی توسط جاذب‌های سنتز شده انجام گرفت. نتایج این بررسی نشان داد که پیچیدگی بافت بر کارایی نانوکامپوزیت‌ها اثر چشمگیری ندارد، بنابراین می‌توان از آن‌ها در نمونه‌های حقیقی با بافت پیچیده نیز برای حذف قرمز کنگو استفاده کرد.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Synthesis, Characterization, and Adsorptive Properties of Polyaniline@MFe2O4 (M: Mg, Mn, Ni) Magnetic Nanocomposites

نویسندگان [English]

  • M. Zare 1
  • E. Adibian 2
  • E. Ghasemi 3
  • F. Ashouri 4
1 Basic Sciences Group, Golpayegan College of Engineering, Isfahan University of Technology, P.O. Box: 87717-67498, Golpayegan, Iran
2 Drug Delivery System Research Center, Tehran Medical Sciences, Islamic Azad University, P.O. Code: 1941933111, Tehran, Iran
3 Department of Pharmaceutical Chemistry, Faculty of Pharmaceutical Chemistry, Tehran Medical Sciences, Islamic Azad University, P.O. Code: 1913674711, Tehran, Iran
4 Department of Applied Chemistry, Faculty of Pharmaceutical Chemistry, Tehran Medical Sciences, Islamic Azad University, P.O. Code: 1913674711, Tehran, Iran
چکیده [English]

This paper used three magnetic adsorbents, including polyaniline@NiFe2O4, polyaniline@MgFe2O4, and polyaniline@MnFe2O4 to remove congo red dye. The synthesized nanocomposites were identified using SEM, XRD, EDX, and FT-IR methods. Then the factors affecting the removal efficiency of congo red were optimized for all three adsorbents. Under optimum conditions, the removal efficiencies of congo red from aqueous media by polyaniline@NiFe2O4, polyaniline@MgFe2O4, and polyaniline@MnFe2O4 were calculated as 92, 90 and

89 %, respectively. The reusability of the used nanocomposites was investigated, so 1 M HCl as a recovery agent could recover up to 4 times all three nanocomposites. The synthesized sorbents performed the removal of congo red from real samples, including well water and dyeing wastewater. The results showed that the matrix does not significantly affect the efficiency of the nanocomposites so that they could be used in real samples with complex matrices.

کلیدواژه‌ها [English]

  • Congo Red
  • Magnetic Nanoparticles
  • Polyaniline@MnFe2O4
  • Polyaniline@NiFe2O4
  • Polyaniline@MgFe2O4
  1. Ahalya N, Kanamadi RD, Ramachandra TV. Biosorption of chromium (VI) from aqueous solutions by the husk of Bengal gram (Cicer arientinum). Electron J Biotechnol. 2005;8:52-56. https://doi.org/10.2225/vol8-issue3-fulltext-10.
  2. Ramachandra TV. Spatial analysis and characterization of lentic ecosystems: a case study of Varthur Lake Bangalore. Int J Ecol Dev. 2008;9:39–56.
  3. Suehara K, Kawamoto Y, Fujii E, Kohda J, NakanoY, Yano T. Biological treatment of wastewater discharged from biodiesel fuel production plant with alkali-catalyzed transesterification. J Biosci Bioeng. 2005;100:437–42.https://doi.org/10.1263/jbb.100.437.
  4. Muthukumar M, Selvakumar N. Studies on the effect of inorganic salts on decolouration of acid dye effluents by ozonation. Dyes Pigm. 2004;62:221–28.https://doi.org/10.1016/j.dyepig.2003.11.002.
  5. Du Z, Deng S, Bei Y, Huang Q, Wang B. Adsorption behavior and mechanism of perfluorinated compounds on various adsorbents-A review. J Hazard Mater. 2014; 274:443–54.https://doi.org/10.1016/j.jhazmat.2014.04.038.
  6. Randtke SJ. Organic contaminant removal by coagulation and related process combinations. J Am Water Works Assoc. 1998;80:40–56.https://doi.org/10.1002/j.1551-8833.1988.tb03037.x
  7. Parsazadeh N, Yousefi F, Ghaedi M, Karimi R, Borosan F. Optimization of Disulphine Blue Dye Adsorption Process on ZnO-Cr Loaded on Activated Carbon Using Response Surface Methodology and Modeling by Means of Artificial Neural Network. Nashrieh Shimi va Mohandesi Shimi Iran. 2018;37:37-54. [In Persian]
  8. Purkait MK, Maiti A, Dasgupta S, De S. Removal of congo red using activated carbon and its regeneration. J Hazard Mater 2007;145:287-95.https://doi.org/10.1016/j.jhazmat.2006.11.021
  9. Li Y, Lu L, Li X, Chen D, Ma L, Liu R. Fabrication of Magnetic NiFe2O4 Nanorods and Their Removal Performances of Congo Red. J Nanosci Nanotechnol. 2016;16:6131–38.https://doi.org/10.1166/jnn.2016.10842
  10. You L, Huang C, Lu F, Wang A, Liu X, Zhang Q. Facile synthesis of high performance porous magnetic chitosan-polyethylenimine polymer composite for Congo red removal. Int J Biol Macromol. 2018;107:1620-28.https://doi.org/10.1016/j.ijbiomac.2017.10.025
  11. Li Y, Lu L, Li X, Chen D, Ma L, Liu R. Fabrication of Magnetic NiFe2O4 Nanorods and Their Removal Performances of Congo Red. J Nanosci Nanotechnol. 2016;16:6131–88.https://doi.org/10.1166/jnn.2016.10842
  12. He A, Lu R, Wang Y, Xiang J, Li Y, He D. Adsorption Characteristic of Congo Red Onto Magnetic MgFe2O4 Nanoparticles Prepared via the Solution Combustion and Gel Calcination Process. J Nanosci Nanotechnol. 2017;17:3967–74.https://doi.org/10.1166/jnn.2017.13091
  13. He D, Yu Q, Liu Y, Liu X, Li Y, Liu R. Removal of Congo Red by Magnetic MnFe2O4 Nanosheets Prepared via a Facile Combustion Process. J Nanosci Nanotechnol. 2019;19:2702–09.http://doi.org/10.1166/jnn.2019.15825
  14. Yang H, Han N, Lin Y, Kang P, Zhang G, Wang J. Synthesis and microwave absorbing properties of polyaniline/ CoFe2O4/ Ba0.4Sr0.6TiO3 composites. J Mater Sci Mater Electron. 2016;27:10849–54. https://doi.org/10.1007/s10854-016-5193-y
  15. Kharazi P, Rahimi R, Rabbani M, Copper ferrite-polyaniline nanocomposite: Structural, thermal, magnetic and dye adsorption properties. Solid State Sci. 2019;93:95–100.
  16. Dasa P, Nisaa S, Debnatha A, Sahab B. Enhanced adsorptive removal of toxic anionic dye by novel magnetic polymeric nanocomposite: optimization of process parameters. Dispers Sci Technol. 2022;43:880-95.
  17. Gabal MA, Al-Juaid AA, El-Rashed S, Hussein MA, Al-Angari YM, Saeed A. Structural, Thermal, Magnetic and Electrical Properties of Polyaniline/CoFe2O4 Nano-Composites with Special Reference to the Dye Removal Capability. J Inorg Organomet Polym. 2019;29:2197–213
  18. Mu B, Tang J, Zhang L, Wang A. Preparation, Characterization and Application on Dye Adsorption of a Well-Defined Two-Dimensional Superparamagnetic Clay/ Polyaniline/Fe3O4 Nanocomposite. Appl Clay Sci. 2016;132:7–16. 
  19. Khairy M. Synthesis, characterization, magnetic and electrical properties of polyaniline/NiFe2O4 nanocomposite. Synth Met. 2014;189:34–41.https://doi.org/10.1016/j.synthmet.2013.12.022
  20. Khafagy RM, Synthesis, characterization, magnetic and electrical properties of the novel conductive and magnetic Polyaniline/MgFe2O4 nanocomposite having the core-shell structure. J Alloys Compd. 2011;509:9849-57.https://doi.org/10.1016/j.jallcom.2011.07.008
  21. Malakootikhah J, Rezayan AH, Negahdari B, Nasseri S, Rastegar H. Porous MnFe2O4@SiO2 magnetic glycopolymer: A multivalent nanostructure for efficient removal of bacteria from aqueous solution. Ecotoxicol. Environ Saf. 2018;166:277-84.https://doi.org/10.1016/j.ecoenv.2018.09.086
  22. Yang H, Han N, Lin Y, Kang P, Zhang G, Wang J. Synthesis and microwave absorbing properties of polyaniline/ CoFe2O4/Ba0.4Sr0.6TiO3 composites. J Mater Sci Mater Electron. 2016;27:10849–54.https://doi.org/10.1007/s10854-016-5193-y
  23. Mallakpour S, Lormahdiabadi M. Removal of the Anionic Dye Congo Red from an Aqueous Solution Using a Crosslinked Poly(vinyl alcohol)-ZnO-Vitamin M Nanocomposite Film: A Study of the Recent Concerns about Nonlinear and Linear Forms of Isotherms and Kinetics. Langmuir. 2022;38:4065–76.https://doi.org/10.1021/acs.langmuir.2c00091
  24. Si J, Zhang S, Liu X, Fang K. Flower-Shaped Ni/Co MOF with the Highest Adsorption Capacity for Reactive Dyes. Langmuir. 2022;38:6004–12.https://doi.org/10.1021/acs.langmuir.2c00184
  25. Pradeep A, Priyadharsini P, Chandrasekaran G. Sol- gel route of synthesis of nanoparticles of MgFe2O4 and XRD, FTIR and VSM study. J. Magn. Magn. Mater. 2008;320:2774-79.https://doi.org/10.1016/j.jmmm.2008.06.012
  26. Zehang Z, Zhang X, Lu C, Lana L, Yuan G. Polyaniline-decorated cellulose aerogel nanocomposite with strong interfacial adhesion and enhanced photocatalytic activity. RSC Advances. 2014;4:8966-72.https://doi.org/10.1039/C3RA46441E
  27. Hou X, Feng J, Xu X, Zhang M. Synthesis and characterizations of spinel MnFe2O4 nanorod by seed–hydrothermal route. J. Alloys Compd. 2010; 491:258-63. https://doi.org/10.1016/j.jallcom.2009.10.029
  28. Sivakumar P, Ramesh R, Ramanand A, Ponnusamy S, Muthamizhchelvan C. Synthesis, Studies and Growth Mechanism of Ferromagnetic NiFe2O4 Nanosheet. Appl Surf Sci. 2012; 258:6648-52.https://doi.org/10.1016/j.apsusc.2012.03.099
  29. Bagherzadeh M, Zare M, Salemnoush T, Özkar S, Akbayrak S. Immobilization of dioxomolybdenum(VI) complex bearing salicylidene 2-picoloyl hydrazone on chloropropyl functionalized SBA-15: A highly active, selective and reusable catalyst in olefin epoxidation. Appl Catal A: Gen. 2014; 475:55-62.https://doi.org/10.1016/j.apcata.2014.01.020
  30. Tanzifi M, Yaraki MT, Kiadehi AD, Hosseini SH, Olazar M, Bhati AK. Adsorption of Amido Black 10B from aqueous solution using polyaniline/SiO2 nanocomposite: Experimental investigation and artificial neural network modeling. Colloids Interface Sci Commun. 2018;510:246-61.https://doi.org/10.1016/j.jcis.2017.09.055
  31. Purwajanti S, Zhang H, Huang X, Song H, Yang Y, Zhang J. et al. Mesoporous Magnesium Oxide Hollow Spheres as Superior Arsenite Adsorbent: Synthesis and Adsorption Behaviour. ACS Appl Mater Interfaces. 2016;38:25306-12. https://doi.org/10.1021/acsami.6b08322
  32. Nasar A, Mashkoor F. Application of polyaniline-based adsorbents for dye removal from water and wastewater-a review. Environ Sci Pollut. Res. 2019:26:5333-56.https://doi.org/10.1007/s11356-018-3990-y
  33. Habibi MK, Rafiaei SM, Alhaji A, Zare M. Synthesis of ZnFe2O4: 1 wt % Ce3+/Carbon fibers composite and investigation of its adsorption characteristic to remove Congo red dye from aqueous solutions. J Alloys Compd. 2021;890:161901-12.https://doi.org/10.1016/j.jallcom.2021.161901
  34. Wang L, Li J, Wang Y, Zhao L, Jiang Q. Adsorption capability for Congo red on nanocrystalline MFe2O4 (M = Mn, Fe, Co, Ni) spinel ferrites. J Chem Eng. 2012;181-182:72-79.https://doi.org/10.1016/j.cej.2011.10.088
  35. Babakir BAM, Abd Ali LI, Ismail HK. Rapid removal of anionic organic dye from contaminated water using a poly(3-aminobenzoic acid/grapheme oxide/cobalt ferrite) nanocomposite low-cost adsorbent via adsorption techniques. Arab J Chem. 2022;15:104318-41.https://doi.org/10.1016/j.arabjc.2022.104318
  36. Singh S, Perween S, Ranjan A. Dramatic enhancement in adsorption of congo red dye in polymer-nanoparticle composite of polyaniline-zinc titanate. J Environ Chem Eng. 2021;9:105149-70.https://doi.org/10.1016/j.jece.2021.105149
  37. Zare N, Kojoori RK, Abdolmohammadi S, Sadegh-Samiei S. Ultrasonic-assisted synthesis of highly effective visible light Fe3O4 /ZnO/PANI nanocomposite: Thoroughly kinetics and thermodynamic investigations on the Congo red dye decomposition. J Mol Struct. 2022; (1250): 131903-131924.https://doi.org/10.1016/j.molstruc.2021.131903
  38. Yang L, Zhang Y, Liu X, Jiang X, Zhang Z, Zhang T. et al. The investigation of synergistic and competitive interaction between dye Congo red and methyl blue on magnetic MnFe2O4. J Chem Eng. 2014;246:88–96.https://doi.org/10.1016/j.cej.2014.02.044