سنتز اکسیدگرافن آلایش‌شده مضاعف با عصاره‌ سیر و کاتیون‌های مس برای استفاده در پوشش‌‌های ضدباکتری

نوع مقاله : مقاله پژوهشی

نویسندگان

1 گروه پژوهشی پوشش‌های سطح و خوردگی، پژوهشگاه رنگ، تهران، ایران، صندوق پستی: 654-167654

2 شرکت اطلس پوشش محافظ، تهران، ایران، صندوق پستی: 841-1668815

3 آزمایشگاه نانومواد و نانوکامپوزیت پلیمری، دانشکده مهندسی، دانشگاه بریتیش کلمبیا، کانادا

چکیده

علی‌رغم تلاش‌های خستگی‌ناپذیر در زمینه‌ کاوش داروها و عوامل ضدباکتری، همواره دست‌یابی به خاصیت ضدباکتری بهبودیافته و به‌حداقل رساندن مواد مضر امری چالش برانگیز بوده‌است. نظر به خواص ضدباکتری اعجاب برانگیز عصاره‌ی سیر، در این پژوهش به‌جای استفاده از عوامل احیاکننده ‌خطرناک از عصاره‌ی سیر با هدف احیا و آلایش اکسید گرافن به‌صورت هم‌زمان استفاده گردید. به منظوراحیا/ آلایش اکسید گرافن روش گرمابی به‌کار گرفته شد. در ادامه، کاتیون‌های مس بر روی بستر اکسید گرافنی آلایش‌شده با عصاره سیر بارگذاری شد. سنتز موفقیت‌آمیز محصول توسط آزمون طیف‌سنجی تبدیل فوریه زیر قرمز تایید شد. جهت تایید آلایش اکسید گرافن توسط عصاره سیر از آزمون طیف‌سنجی فوتوالکترون پرتو ایکس استفاده شد. همچنین براساس نتایج آزمون طیف سنجی فوتوالکترون پرتو ایکس میزان بارگذاری دو عنصر گوگرد و نیتروژن به ترتیب برابر با 1.4 درصد و 1.0 درصد گزارش شد. نتایج استفاده از اکسید گرافن آلایش‌شده مضاعف در پوشش آب‌پایه اکریلیکی بر روی دیوارپوش پی‌وی‌سی نشان داد که میزان رشد عوامل باکتریایی با گذشت 6 ساعت در حدود 100 درصد کاهش می‌یابد.

کلیدواژه‌ها


عنوان مقاله [English]

Synthesis of Double-doped Graphene Oxide with Garlic Extract and Cu Cations for Application in Anti-bacterial Coatings

نویسندگان [English]

  • S. Akbaripoor Tafreshi Nejad 1
  • E. Alibakhshi 2
  • B. Ramezanzadeh 1
  • S. A. Haddadi 3
  • M. Arjmand 3
  • M. Mahdavian 1
1 Department of Surface Coatings and Corrosion, Institute for Color Science and Technology, P.O. Box: 16765-654, Tehran, Iran
2 Atlas Protecting Coating, P. O. Box: 1668815-841, Tehran, Iran
3 Nanomaterials and Polymer Nanocomposites Laboratory, School of Engineering, University of British Columbia, Kelowna, BC, V1V 1V7 Canada
چکیده [English]

Notwithstanding the indefatigable endeavor to explore antibacterial drugs and agents, achieving improved antibacterial properties and minimizing hazardous matters has always been challenging. Garlic extract was utilized to reduce and dope graphene oxide simultaneously, considering the astonishing antibacterial characteristics of garlic extract instead of using dangerous reducing agents. A hydrothermal method was used to reduce/ dope graphene oxide. Copper cations were also loaded on the graphene oxide nanosheets doped with garlic extract. The successful synthesis of the products was confirmed by Fourier transform infrared spectroscopy. X-ray photoelectron spectroscopy was used to affirm the doping of graphene oxide using garlic extract. Furthermore, according to the results obtained from X-ray photoelectron spectroscopy, the atomic percentage of S and N elements was 1.4 % and 1 %, respectively. The result revealed that double-doped graphene oxide in water base acrylic coating on PVC panels showed a 100 percent decrease in the growth of bacteria after 6 hours.

کلیدواژه‌ها [English]

  • Graphene oxide
  • Garlic extract
  • Reduction
  • Antibacterial
  • Acrylic
  • PVC panel
1.   M. Raffi. S. Mehrwan. T. M. Bhatti. J. I. Akhter. A. Hameed. W. Yawar.M. M. ul Hasan. Investigations into the antibacterial behavior of copper nanoparticles against Escherichia coli. Ann. Microbiol. 60 (2010). 75-80.
2.   S. B. Levy. Antibiotic availability and use: consequences to man and his envronment. J. Clin. Epidemiol. 45 (1991). 83-87.
3.   G. Tong. M. Yulong. G. Peng.X. Zirong. Antibacterial effects of the Cu (II)-exchanged montmorillonite on Escherichia coli K88 and Salmonella choleraesuis. Vet. Microbiol. 105 (2005). 113-122.
4.   N. Cioffi. L. Torsi. N. Ditaranto. G. Tantillo. L. Ghibelli. L. Sabbatini. T. Bleve-Zacheo. M. D'Alessio. P. G. Zambonin.E. Traversa. Copper nanoparticle/polymer composites with antifungal and bacteriostatic properties. Chem. Mater. 17 (2005). 5255-5262.
5.   M. Cloutier. D. Mantovani.F. Rosei. Antibacterial coatings: challenges, perspectives, and opportunities. Trends Biotechnol. 33 (2015). 637-652.
6.   D. Campoccia. L. Montanaro.C. R. Arciola. A review of the biomaterials technologies for infection-resistant surfaces. Biomaterials. 34 (2013). 8533-8554.
7.   K. Lewis.A. M. Klibanov. Surpassing nature: rational design of sterile-surface materials. Trends Biotechnol. 23 (2005). 343-348.
8.   J. Hasan. R. J. Crawford.E. P. Ivanova. Antibacterial surfaces: the quest for a new generation of biomaterials. Trends Biotechnol. 31 (2013). 295-304.
9.   W. M. Dunne Jr. Bacterial adhesion: seen any good biofilms lately? Clin Microbiol Rev. 15 (2002). 155-166.
10.W. Han. Z. Wu. Y. Li.Y. Wang. Graphene family nanomaterials (GFNs)—promising materials for antimicrobial coating and film: A review. Chem. Eng. J. 358 (2019). 1022-1037.
11.V. C. Sanchez. A. Jachak. R. H. Hurt.A. B. Kane. Biological interactions of graphene-family nanomaterials: an interdisciplinary review. Chem. Res. Toxicol. 25 (2012), 15-34.
12.M. Mohammad Raei Nayini, M. Jalili , Z. Ranjbar, Printed Electronics, Based on Carbon Nanotubes and Graphene Nanosheets. J. Stud. Color World, 10(2020), 29-42.
13.A. C. Neto. F. Guinea.N. M. Peres. Drawing conclusions from graphene. Phys. World. 19 (2006). 33.
14.W. Hu. C. Peng. W. Luo. M. Lv. X. Li. D. Li. Q. Huang.C. Fan. Graphene-based antibacterial paper. ACS nano. 4 (2010). 4317-4323.
15.R. Li. N. D. Mansukhani. L. M. Guiney. Z. Ji. Y. Zhao. C. H. Chang. C. T. French. J. F. Miller. M. C. Hersam.A. E. Nel. Identification and optimization of carbon radicals on hydrated graphene oxide for ubiquitous antibacterial coatings. ACS nano. 10 (2016). 10966-10980.
16.O. Akhavan.E. Ghaderi. Toxicity of graphene and graphene oxide nanowalls against bacteria. ACS nano. 4 (2010). 5731-5736.
17.S. Gurunathan. J. W. Han. A. A. Dayem. V. Eppakayala. M.-R. Park. D.-N. Kwon.J.-H. Kim. Antibacterial activity of dithiothreitol reduced graphene oxide. J Ind Eng Chem. 19 (2013). 1280-1288.
18.C.-H. Deng. J.-L. Gong. G.-M. Zeng. P. Zhang. B. Song. X.-G. Zhang. H.-Y. Liu.S.-Y. Huan. Graphene sponge decorated with copper nanoparticles as a novel bactericidal filter for inactivation of Escherichia coli. Chemosphere. 184 (2017). 347-357.
19.M. Ramezanzadeh. M. Asghari. B. Ramezanzadeh.G. Bahlakeh. Fabrication of an efficient system for Zn ions removal from industrial wastewater based on graphene oxide nanosheets decorated with highly crystalline polyaniline nanofibers (GO-PANI): Experimental and ab initio quantum mechanics approaches. Chem. Eng. J. 337 (2018). 385-397.
20.L. Tavares.C. P. Z. Noreña. Characterization of the physicochemical, structural and thermodynamic properties of encapsulated garlic extract in multilayer wall materials. Powder Technol. 378 (2021). 388-399.
21.L. Rastogi.J. Arunachalam. Sunlight based irradiation strategy for rapid green synthesis of highly stable silver nanoparticles using aqueous garlic (Allium sativum) extract and their antibacterial potential. Mater. Chem. Phys. 129 (2011). 558-563.
22.P. Parthipan. P. Elumalai. J. Narenkumar. L. L. Machuca. K. Murugan. O. P. Karthikeyan.A. Rajasekar. Allium sativum (garlic extract) as a green corrosion inhibitor with biocidal properties for the control of MIC in carbon steel and stainless steel in oilfield environments. Int. Biodeterior. Biodegradation. 132 (2018), 66-73.
23.A. Gholami Akerdi, S. H. Bahrami , M. Arami, N. Noormohammadi, Discoloration of Cationic Dye by Using Reduced Graphene Oxide Modified Carbon Electrode and Magnetite Nanoparticles Within Heterogeneous Electrofenton Process, J. Color Sci. Tech. 15(2021), 1-11.
24.A. M. Mollaei, Sh. Salem, Synthesis of Magnesium Aluminate-Grapheme Oxide Composite for Dye Removal, J. Color Sci. Tech. 14(2020), 173-190.
25.M. Ramezanzadeh. B. Ramezanzadeh. M. Mahdavian.G. Bahlakeh. Development of metal-organic framework (MOF) decorated graphene oxide nanoplatforms for anti-corrosion epoxy coatings. Carbon. 161 (2020). 231-251.
26.S. K. Srivastava. C. Ogino.A. Kondo. Green synthesis of thiolated graphene nanosheets by alliin (garlic) and its effect on the deposition of gold nanoparticles. RSC Adv. 4 (2014). 5986-5989.
27.B. De. B. Voit.N. Karak. Carbon dot reduced Cu2O nanohybrid/ hyperbranched epoxy nanocomposite: mechanical, thermal and photocatalytic activity. RSC Adv. 4 (2014). 58453-58459.
28.M. Fukuda.N. Koga. Kinetics and mechanisms of the thermal decomposition of copper (II) hydroxide: A consecutive process comprising induction period, surface reaction, and phase boundary-controlled reaction. J. Phys. Chem. C. 122 (2018). 12869-12879.
29.D. Majumdar. N. Baugh.S. K. Bhattacharya. Ultrasound assisted formation of reduced graphene oxide-copper (II) oxide nanocomposite for energy storage applications. Colloids Surf. A. 512 (2017). 158-170.
30.A. Shang. S.-Y. Cao. X.-Y. Xu. R.-Y. Gan. G.-Y. Tang. H. Corke. V. Mavumengwana.H.-B. Li. Bioactive compounds and biological functions of garlic (Allium sativum L.). Foods. 8 (2019). 246.
31.M. Li. C. Liu. H. Zhao. H. An. H. Cao. Y. Zhang.Z. Fan. Tuning sulfur doping in graphene for highly sensitive dopamine biosensors. Carbon. 86 (2015). 197-206.
32.C. Zhai. M. Sun. M. Zhu. S. Song.S. Jiang. A new method to synthesize sulfur-doped graphene as effective metal-free electrocatalyst for oxygen reduction reaction. Appl. Surf. Sci. 407 (2017). 503-508.
33.B. Quan. S.-H. Yu. D. Y. Chung. A. Jin. J. H. Park. Y.-E. Sung.Y. Piao. Single source precursor-based solvothermal synthesis of heteroatom-doped graphene and its energy storage and conversion applications. Sci. Rep. 4 (2014). 1-6.
34.N. Sharma. V. Sharma. Y. Jain. M. Kumari. R. Gupta. S. Sharma.K. Sachdev, Synthesis and characterization of graphene oxide (GO) and reduced graphene oxide (rGO) for gas sensing application. Macromol. Symp. 376(2017), 1700006: Wiley Online Library.
35.M. Mahmudzadeh. H. Yari. B. Ramezanzadeh.M. Mahdavian. Urtica dioica extract as a facile green reductant of graphene oxide for UV resistant and corrosion protective polyurethane coating fabrication. J Ind Eng Chem. 78 (2019). 125-136.
36.S. Park. J. An. J. R. Potts. A. Velamakanni. S. Murali.R. S. Ruoff. Hydrazine-reduction of graphite-and graphene oxide. Carbon. 49 (2011). 3019-3023.
37.M. Wojtoniszak. X. Chen. R. J. Kalenczuk. A. Wajda. J. Łapczuk. M. Kurzewski. M. Drozdzik. P. K. Chu.E. Borowiak-Palen. Synthesis, dispersion, and cytocompatibility of graphene oxide and reduced graphene oxide. Colloids Surf. B. 89 (2012). 79-85.
38.X. Wu.G. Shi. Production and characterization of stable superhydrophobic surfaces based on copper hydroxide nanoneedles mimicking the legs of water striders. J. Phys. Chem. B. 110 (2006). 11247-11252.
39.A. A. Khashan. Antibacterial activity of garlic extract (Allium sativum) against Staphylococcus aureus in vitro. GJBB. 3 (2014). 346-348.
40.J. Borlinghaus. F. Albrecht. M. C. Gruhlke. I. D. Nwachukwu.A. J. Slusarenko. Allicin: chemistry and biological properties. Molecules. 19 (2014). 12591-12618.
41.S. Shankar. R. Pangeni. J. W. Park.J.-W. Rhim. Preparation of sulfur nanoparticles and their antibacterial activity and cytotoxic effect. Mater. Sci. Eng. C. 92 (2018). 508-517.
42.S. Khamseh. M. Ganjaee Sari. E. Alibakhshi, M. Nemati. Hydrogen-free Cu: Amorphous-C: N Coating on TC4 Titanium alloy: The role of gas ratio on mechanical and antibacterial potency. Prog. Color Color. Coat. 14 (2021). 281-291.
43.X. Zou. L. Zhang. Z. Wang.Y. Luo. Mechanisms of the antimicrobial activities of graphene materials. J. Am. Chem. Soc. 138 (2016). 2064-2077.
44.Y. Tu. M. Lv. P. Xiu. T. Huynh. M. Zhang. M. Castelli. Z. Liu. Q. Huang. C. Fan.H. Fang. Destructive extraction of phospholipids from Escherichia coli membranes by graphene nanosheets. Nat. Nanotechnol. 8 (2013). 594-601.
45.L. Shi. J. Chen. L. Teng. L. Wang. G. Zhu. S. Liu. Z. Luo. X. Shi. Y. Wang.L. Ren. The antibacterial applications of graphene and its derivatives. Small. 12 (2016). 4165-4184.
46.J. Li. G. Wang. H. Zhu. M. Zhang. X. Zheng. Z. Di. X. Liu.X. Wang. Antibacterial activity of large-area monolayer graphene film manipulated by charge transfer. Sci. Rep. 4 (2014). 1-8.
47.S. Panda. T. K. Rout. A. D. Prusty. P. M. Ajayan.S. Nayak. Electron transfer directed antibacterial properties of graphene oxide on metals. Adv. Mater. 30 (2018). 1702149.
48.W. Qian. C. Yan. D. He. X. Yu. L. Yuan. M. Liu. G. Luo.J. Deng. pH-triggered charge-reversible of glycol chitosan conjugated carboxyl graphene for enhancing photothermal ablation of focal infection. Acta Biomater. 69 (2018). 256-264.
49.J. Zhao. Z. Wang. J. C. White.B. Xing. Graphene in the aquatic environment: adsorption, dispersion, toxicity and transformation. Environ. Sci. Technol. 48 (2014). 9995-10009.