پیش‌بینی میزان جذب آلاینده‌های رنگی آزو از پساب با استفاده از جاذب‌های متخلخل چارچوب‌های فلز-آلی

نوع مقاله : مقاله پژوهشی

نویسنده

استادیار، گروه مهندسی شیمی، دانشکده مهندسی شیمی و مواد، دانشگاه صنعتی شاهرود، شاهرود، ایران، صندوق پستی: 3619995161

چکیده

در پژوهش حاضر، توانایی بالقوه روش‌های یادگیری ماشین هوشمند از قبیل LS-SVM، RBFNN، MLPNN و ANFIS برای پیش‌بینی بازده حذف رنگزاهای آزو از پساب مورد بررسی قرار گرفت. به این منظور، بانک بزرگی از داده‌های مربوط به جذب سطحی رنگزاهای آزو بوسیله چارچوب­های فلز-آلی گوناگون به عنوان جاذب­های متخلخل تحت شرایط مختلف از قبیل مقدار جاذب، غلظت اولیه رنگزاها، pH محلول، مساحت سطح ویژه جاذب، دما و زمان تماس جمع‌آوری شدند. بررسی متغیرهای مختلف آماری و مقایسه مدل‌های مختلف نشان داد که مدل LS-SVM کمترین خطا و در نتیجه دقیق‌ترین پیش‌بینی را برای میزان جذب آلاینده‌های رنگی در بین سایر مدل‌ها ارائه می‌دهد که در آن مقادیر AARE (%)، R2، STD، و RMSE به ترتیب برابر با 1.844، 0.9899، 0.0213 و 18.511 درصد به دست آمدند. همچنین، این الگوریتم سازگاری دقیق­تری با روند فرآیند جذب سطحی رنگزاهای آزو با تغییرات غلظت اولیه رنگزا، pH محلول و دما نشان داد. آنالیز حساسیت نشان داد که سطح ویژه و مقدار جاذب متخلخل تاثیر مثبت و عواملی مانند غلظت اولیه و pH اثر منفی بر روی بازده جذب دارند.

کلیدواژه‌ها


عنوان مقاله [English]

Prediction of the Adsorption Amount of Azo Dyes Pollutants from Wastewater Using Porous Metal-organic Framework Adsorbents

نویسنده [English]

  • Jafar Abdi
Faculty of Chemical and Material Engineering, Shahrood University of Technology, P.O. Box: 3619995161, Shahrood, Iran
چکیده [English]

In this project, the potential capability of intelligent machine learning methods such as LS-SVM, RBFNN, MLPNN, and ANFIS was investigated for estimating the efficiency of azo dyes removal from wastewater. To this aim, a huge data bank of azo dyes adsorption by metal-organic frameworks as porous adsorbents were collected under different conditions, including adsorbent dosage, initial dye concentration, solution pH, specific surface area, temperature, and contact time. Assessing different statistical parameters and comparing the models showed that LS-SVM approach had the minimum error and, therefore, it conferred the most accurate prediction for the efficiency of azo dyes removal by MOFs among other models. The values of AARE (%), R2, STD, and RMSE were calculated 1.844 %, 0.9899, 0.0213, and 18.511, respectively for LS-SVM. Also, this model illustrated precise compatibility with adsorption trends by variation of initial dye concentration, pH, and temperature. The sensitivity analysis presented that adsorbent surface area and adsorbent dosage had a positive impact and initial concentration and pH negatively influenced estimating the removal of dyes.

کلیدواژه‌ها [English]

  • Metal
  • organic framework Wastewater treatment Azo dyes Intelligent models Sensitivity analysis
1.   A. Saravanan, P. S. Kumar, P. Yaashikaa, S. Karishma, S. Jeevanantham, S. Swetha, Mixed biosorbent of agro waste and bacterial biomass for the separation of Pb (II) ions from water system. Chemosphere. 277(2021), 130236.
2.   M. I. Khan, M. Mubashir, D. Zaini, M. H. Mahnashi, B.A. Alyami, A.O. Alqarni, P. L. Show, Cumulative impact assessment of hazardous ionic liquids towards aquatic species using risk assessment methods. J. Hazard. Mater. 415(2021), 125364.
3.   A. Murugesan, M. Loganathan, P. S. Kumar, D.-V. N. Vo, Cobalt and nickel oxides supported activated carbon as an effective photocatalysts for the degradation Methylene Blue dye from aquatic environment. Sustainable Chem. Pharm. 21(2021), 100406.
4.   A. A. Renita, K. H. Vardhan, P. S. Kumar, P. T. Ngueagni, A. Abilarasu, S. Nath, P. Kumari, R. Saravanan, Effective removal of malachite green dye from aqueous solution in hybrid system utilizing agricultural waste as particle electrodes. Chemosphere. 273(2021), 129634.
5.   M. T. Yagub, T. K. Sen, S. Afroze, H. M. Ang, Dye and its removal from aqueous solution by adsorption: a review. Adv. Colloid Interface Sci. 209(2014), 172-184.
6.   A. Ayati, M. N. Shahrak, B. Tanhaei, M. Sillanpää, Emerging adsorptive removal of azo dye by metal–organic frameworks. Chemosphere. 160(2016), 30-44.
7.   A. Shamsi Kasmaei, M. K. Rofouei, M. E. Olya, S. Ahmed, Kinetic and thermodynamic studies on the reactivity of hydroxyl radicals in wastewater treatment by advanced oxidation processes. Prog. Color, Colorants Coat. 13(2020), 1(2020), 1-10.
8.   A. Ayati, A. Ahmadpour, F. F. Bamoharram, B. Tanhaei, M. Mänttäri, M. Sillanpää, A review on catalytic applications of Au/TiO2 nanoparticles in the removal of water pollutant, Chemosphere. 107(2014), 163-174.
9.   J. Abdi, Synthesis of zeolitic imidazolate framework-8 based magnetic nanocomposite incorporated with silver nanoparticles for efficient removal of organic pollutants from wastewate. J. Sep. Sci. Eng. 12(2021), 81-93.
10.J. Abdi, A. J. Sisi, M. Hadipoor, A. Khataee, State of the art on the ultrasonic-assisted removal of environmental pollutants using metal-organic frameworks. J. Hazard. Mater. 424(2022), 127558.
11.R. L. Singh, P. K. Singh, R. P. Singh, Enzymatic decolorization and degradation of azo dyes–A review. Int. Biodeterior. Biodegrad. 104(2015), 21-31.
12.S. Kashefi, S. M. Borghei, N. M. Mahmoodi, Application of face-centered central composite design (fcccd) in optimization of enzymatic decolorization of two azo dyes: a modeling vs. empirical comparison. Prog. Color, Colorants Coat. 12(2019), 179-190.
13.Z. Karimi, A. Allahverdi, F. Oshani, Investigation on the removal of dyes from wastewater using alumina composite nano adsorbent. J. Stud. Color World. 10(2020), 41-59.
14.E. Jalilnejad, M. Alizadeh, S. Fakhraddin fakhriazar, Application of biological methods in decolorization of azo dye containing wastewaters. J. Stud. Color World. 8(2018), 27-40.
15.A. Vakili Tajareh, H. Ganjidoust, B. Ayati. Photocatalytic removal of azo dye acid red 14 from water by magnetic nanocomposite TiO2/Fe3O4/CNT. J. Color Sci. Tech. 13(2019), 75-87.
16.S. Wong, N. A. Ghafar, N. Ngadi, F. A. Razmi, I. M. Inuwa, R. Mat, N. A. SS Amin, Effective removal of anionic textile dyes using adsorbent synthesized from coffee waste. Sci. Rep. 10(2020), 1-13.
17.M. Abhinaya, R. Parthiban, P. S. Kumar, D. V. N. Vo, A review on cleaner strategies for extraction of chitosan and its application in toxic pollutant removal. Environ. Res. (2021), 110996.
18.S. Ullah, A.G. Al-Sehemi,M. Mubashir, A. Mukhtar, S. Saqib, M.A. Bustam, C. K. Cheng, M. Ibrahim, P. L. Show, Adsorption behavior of mercury over hydrated lime: Experimental investigation and adsorption process characteristic study. Chemosphere. 271(2021), 129504.
19.J. Abdi, M. Vossoughi, N. M. Mahmoodi, I. Alemzadeh, Synthesis of metal-organic framework hybrid nanocomposites based on GO and CNT with high adsorption capacity for dye removal. Chem. Eng. J. 326(2017), 1145-1158.
20.K. Y. Zou, Z. X. Li, "Controllable Syntheses of MOF‐Derived Materials, Chem.–A Eur. J. 24(2018), 6506-6518.
21.Y.-S. Kang, Y. Lu, K. Chen, Y. Zhao, P. Wang, W.-Y. Sun, Metal–organic frameworks with catalytic centers: from synthesis to catalytic application. Coord. Chem. Rev. 378(2019), 262-280.
22. R. Nivetha, P. Kollu, K. Chandar, S. Pitchaimuthu, S. K. Jeong, A. N. Grace, Role of MIL-53(Fe)/hydrated–dehydrated MOF catalyst for electrochemical hydrogen evolution reaction (HER) in alkaline medium and photocatalysis. RSC Adv. 9(2019), 3215-3223.
23.J. Abdi, F. Banisharif, A. Khataee, Amine-functionalized Zr-MOF/CNTs nanocomposite as an efficient and reusable photocatalyst for removing organic contaminants. J. Mol. Liq. 334(2021), 116129.
24.L. Heinke, C. Wöll, Surface‐mounted metal–organic frameworks: crystalline and porous molecular assemblies for fundamental insights and advanced applications. Adv. Mater. 31(2019), 1806324.
25.C. Doonan, R. Riccò, K. Liang, D. Bradshaw, P. Falcaro, Metal–organic frameworks at the biointerface: synthetic strategies and applications. Acc. Chem. Res. 50(2017), 1423-1432.
26.K. S. Lin, Y. G. Lin, H. W. Cheng, Y. H. Haung, Preparation and characterization of V-Loaded titania nanotubes for adsorption/photocatalysis of basic dye and environmental hormone contaminated wastewaters. Catal. Today, 307(2018), 119-130.
27.M. J. Uddin, R. E. Ampiaw, W. Lee, Adsorptive removal of dyes from wastewater using a metal-organic framework: A review, Chemosphere. (2021), 131314.
28.M. Heydari, M. Gharagozlou, M. Ghahari, Synthesis and application of nanocomposite containing metal-organic framework and magnetic nanoparticles in silica matrix for decolorization of methylene blue. J. Color Sci. Tech. 15(2021), 103-115.
29.S. M. Seyed Ahmadian, A. R. Amani-Ghadim, F. Bipir, Synthesize of metal organic frameworks based on the titanium and investigations of its activity in photocatalytic Removal of reactive blue 19 dye from aqueous solution. J. Color Sci. Tech. 13(2019), 253-265. 
30.J. Abdi, M. Hadipoor, F. Hadavimoghaddam, A. Hemmati-Sarapardeh, Estimation of tetracycline antibiotic photodegradation from wastewater by heterogeneous metal-organic frameworks photocatalysts. Chemosphere. 287(2022), 132135.
31.N. M. Mahmoodi, J. Abdi, Surface Modified Cobalt Ferrite Nanoparticles with Cationic Surfactant: Synthesis, Multicomponent Dye Removal Modeling and Selectivity Analysis. Prog. Color, Colorants Coat. 12(2019), 163-177.
32.F. Talebkeikhah, S. Rasam, M. Talebkeikhah, M. Torkashvand, A. Salimi, M. K. Moraveji, "Investigation of effective processes parameters on lead (II) adsorption from wastewater by biochar in mild air oxidation pyrolysis process. Int. J. Environ. Anal. Chem. (2020), 1-21.
33.E. Soroush, M. Mesbah, N. Hajilary, M. Rezakazemi, ANFIS modeling for prediction of CO2 solubility in potassium and sodium based amino acid Salt solutions. J. Environ. Chem. Eng. 7(2019), 102925.
34.K. H. Lee, First course on fuzzy theory and applications. Springer Science & Business Media, 2004.
35.E. Keybondorian, H. Zanbouri, A. Bemani, T. Hamule, Application of MLP-ANN strategy to predict higher heating value of biomass in terms of proximate analysis. Energy Sources. Part A. 39(2017), 2105-2111.
36.J. A. Suykens, J. Vandewalle, Least squares support vector machine classifiers. Neural Process. Lett. 9(1999), 293-300.
37.J. Abdi, D. Bastani, J. Abdi, N. M. Mahmoodi, A. Shokrollahi, A. H. Mohammadi, Assessment of competitive dye removal using a reliable method. J. Environ. Chem. Eng. 2(2014), 1672-1683.
38.C. Chen, M. Zhang, Q. Guan, W. Li, Kinetic and thermodynamic studies on the adsorption of xylenol orange onto MIL-101 (Cr). Chem. Eng. J. 183(2012), 60-67.
39.S.-H. Huo, X.-P. Yan, Metal–organic framework MIL-100 (Fe) for the adsorption of malachite green from aqueous solution. J. Mater. Chem. 22(2012), 7449-7455.
40.E. Haque, N. A. Khan, J. H. Park, S. H. Jhung, Synthesis of a metal–organic framework material, iron terephthalate, by ultrasound, microwave, and conventional electric heating: a kinetic study. Chem.–A Eur. J. 16(2010), 1046-1052.
41.E. Haque, J. W. Jun, S. H. Jhung, Adsorptive removal of methyl orange and methylene blue from aqueous solution with a metal-organic framework material, iron terephthalate (MOF-235). J. Hazard. Mater. 185(2011), 507-511.
42.S. Moradi, S. Dadfarnia, A. Haji Shabani, S. Emami, Removal of congo red from aqueous solution by its sorption onto the metal organic framework MIL-100 (Fe): equilibrium, kinetic and thermodynamic studies. Desalin. Water Treat. 56(2015), 709-721.
43.S. Khanjani, A. Morsali, Ultrasound-promoted coating of MOF-5 on silk fiber and study of adsorptive removal and recovery of hazardous anionic dye “congo red”. Ultrason. sonochem. 21(2014), 1424-1429.
44.E. R. García, R. L. Medina, M. M. Lozano, I. Hernández Pérez, M. J. Valero, A. M. M. Franco, Adsorption of azo-dye orange II from aqueous solutions using a metal-organic framework material: iron-benzenetricarboxylate. Mater. 7(2014), 8037-8057.
45.M. Y. Masoomi, A. Morsali, P. C. Junk, Rapid mechanochemical synthesis of two new Cd (II)-based metal–organic frameworks with high removal efficiency of Congo red. Cryst. Eng. Comm. 17(2015), 686-692.
46.F. Leng, W. Wang, X. J. Zhao, X. L. Hu, Y. F. Li, Adsorption interaction between a metal–organic framework of chromium–benzenedicarboxylates and uranine in aqueous solution. Colloid. Surf. A. 441(2014), 164-169.
47.E. Haque, V. Lo, A. I. Minett, A. T. Harris, T. L. Church, Dichotomous adsorption behaviour of dyes on an amino-functionalised metal–organic framework, amino-MIL-101 (Al). J. Mater. Chem. A. 2(2014), 193-203.
48. B. Tanhaei, A. Ayati, M. Lahtinen, M. Sillanpää, Preparation and characterization of a novel chitosan /Al2O3/magnetite nanoparticles composite adsorbent for kinetic, thermodynamic and isotherm studies of Methyl Orange adsorption. Chem. Eng. J. 259(2015), 1-10.