حذف موثر رنگ اسید آبی 113 از پساب‌های صنعتی با استفاده از منعقدکننده طبیعی و Fe3O4/MnO2 در سیستم تصفیه ترکیبی انعقاد/ ازن‌زنی کاتالیزوری

نوع مقاله : مقاله پژوهشی

نویسندگان

گروه شیمی، دانشکده علوم پایه، دانشگاه گیلان، رشت، ایران، صندوق پستی: ۱۹۱۴۱- ۴۱۳۳۵

چکیده

در این مطالعه، از روش تصفیه ترکیبی انعقاد با منعقدکننده طبیعی و ازن‌زنی کاتالیزوری برای حذف رنگ اسید آبی 113 از محلول رنگی استفاده شد. در مرحله اول، موسیلاژ حاصل از بذر گیاه بالنگو برای پیش تصفیه محلول حاوی رنگ مورد استفاده قرار گرفت. در مرحله دوم برای حذف کامل رنگ از روش ازن زنی کاتالیزوری با نانوکاتالیزور Fe3O4/MnO2 استفاده شد. برای آنالیز و بهینه‌سازی پارامترهای هر دو فرآیند از روش سطح پاسخ با طراحی آزمایش باکس-بنکن استفاده شد. بیشینه حذف رنگ با روش انعقاد-لخته‌سازی 56 درصد بود که در شرایط بهینه pH برابر با 5.2، زمان 20 دقیقه و مقدار ppm 100 منعقدکننده به دست آمد. در فرآیند ازن‌زنی کاتالیزوری در pH 5.3، 18 میلی‌گرم نانوکامپوزیت، g.L-1.h-1 0.2 ازن و 12 دقیقه حذف تقریبا کامل رنگ به دست آمد. نتایج نشان می‌دهد که روش تصفیه ترکیبی عملکرد بسیار خوبی را در حذف رنگ نشان می‌دهد و می‌تواند جهت حذف سایر آلاینده‌های آلی از پساب‌های صنعتی نیز مورد استفاده قرار گیرد.

کلیدواژه‌ها


عنوان مقاله [English]

Effective Removal of Acid Blue 113 Dye from Industrial Effluents Using Natural Coagulant and Fe3O4/MnO2 in Coagulation/Ozonation Combined Treatment System

نویسندگان [English]

  • Seyed Mehdi Pourmoheb Hosseini
  • Naz Chaibakhsh
Department of Chemistry, Faculty of Sciences, University of Guilan, P.O.Box: 41996-13776, Rasht, Iran
چکیده [English]

In this study, the combined treatment method of coagulation with natural coagulant and catalytic ozonation was used to remove Acid Blue 113 dye from the dye solution. In the first stage, the mucilage extracted from the Balangu (Lallemantia royleana) plant seeds was used to pre-treat the dye-containing solution. In the second stage, catalytic ozonation with Fe3O4/MnO2 nanocatalyst was used to completely remove the dye. Response surface methodology with Box-Benken design was used to analyze and optimize the parameters of both processes. Maximum dye removal by the coagulation-flocculation process was 56%, which was obtained in the optimal conditions of pH 5.2, 20 min, and a coagulant amount of 100 ppm. In the catalytic ozonation process at pH 3.5, 18 mg of the nanocomposite, 0.2 g.L-1.h-1 of ozone, and 12 min, almost complete removal of dye was achieved. The results indicate that the combined treatment method performs excellent dye removal and can also be used to remove other organic pollutants from industrial effluents.

کلیدواژه‌ها [English]

  • Mucilage
  • Acid Blue 113
  • Wastewater treatment
  • Coagulation
  • Catalytic ozonation
1.  K. Tanaka, K. Padermpole, T. Hisanaga, Photocatalytic degradation of commercial azo dyes. Water Res. 34 (2000), 327–333.
2.  M. A. Barakat, Adsorption and photodegradation of Procion yellow H-EXL dye in textile wastewater over TiO2 suspension. J. Hydro-Environ. Res. 5 (2011), 137–142. 
3.  M. Khajeh Mehrizi, Investigation of environmental problems caused by dyeing effluent with natural dyes. J. Stud. Color World, 11(2021), 53-62.
4. N. F. Cardoso, E. C. Lima, I. S. Pinto, C. V. Amavisca, B. Royer, R. B. Pinto, W. S. Alencar, S. F. P. Pereira, Application of cupuassu shell as biosorbent for the removal of textile dyes from aqueous solution. J. Environ. Manage. 92 (2011), 1237–1247. 
5.  F. Kanaani, B. Tavakoli, A. R. Pendashteh, N. Chaibakhsh, F. Ostovar, Coagulation/Fenton oxidation combined treatment of compost leachate using quince seed mucilage as an effective biocoagulant. Environ. Technol. 42 (2021), 521-530. 
6.  M. B. Fard, D. Hamidi, J. Alavi, R. Jamshidian, A. Pendashteh, S. A. Mirbagheri, Saline oily wastewater treatment using Lallemantia mucilage as a natural coagulant: Kinetic study, process optimization, and modeling. Ind. Crop. Prod.163 (2012)113326.
7.  N. Farhadi, Structural elucidation of a water-soluble polysaccharide isolated from Balangu shirazi (Lallemantia royleana) seeds. Food Hydrocoll. 72 (2017), 263–270. 
8.  M. T. Falahati, S. M. Ghoreishi, Preparation of Balangu (Lallemantia royleana) seed mucilage aerogels loaded with paracetamol: Evaluation of drug loading via response surface methodology. J. Supercrit. Fluids. 150 (2019), 1–10. 
9.  S. B. Kurniawan, S. R. S. Abdullah, M. F. Imron, N. S. M. Said, N. I. Ismail, H. A. Hasan, A. R. Othman, I. F. Purwanti, Challenges and opportunities of biocoagulant/bioflocculant application for drinking water and wastewater treatment and its potential for sludge recovery. Int. J. Environ. Res. Public Health. 17 (2020), 1–33. 
10.  G. Yu, Y. Wang, H. Cao, H. Zhao, Y. Xie, Reactive oxygen species and catalytic active sites in heterogeneous catalytic ozonation for water purification. Environ. Sci. Technol. 54 (2020), 5931–5946. 
11. J. Wang, H. Chen, Catalytic ozonation for water and wastewater treatment: Recent advances and perspective. Sci. Total Environ. 704 (2020), 135249. 
12. J. Zhang, Z. Guo, Y. Li, S. Pan, X. Chen, J. Xu, Effect of environmental conditions on the sorption of uranium on Fe3O4@MnO2 hollow spheres. J. Mol. Liq. 223 (2016), 534–540. 
13.  H. Zhang, Y. He, L. Lai, G. Yao, B. Lai, Catalytic ozonation of Bisphenol A in aqueous solution by Fe3O4 – MnO2 magnetic composites : Performance , transformation pathways and mechanism. Sep. Purif. Technol. 245 (2020), 116449. 
14. J. Wang, Z. Bai, Fe-based catalysts for heterogeneous catalytic ozonation of emerging contaminants in water and wastewater. Chem. Eng. J. 312 (2017), 79–98. 
15. S. N. Jain, P. R. Gogate, Acid Blue 113 removal from aqueous solution using novel biosorbent based on NaOH treated and surfactant modified fallen leaves of Prunus Dulcis. J. Environ. Chem. Eng. 5 (2017), 3384–3394. 
16.  F. Shokoofehpoor, N. Chaibakhsh, A.G. Gilani, Optimization of sono-Fenton degradation of Acid Blue 113 using iron vanadate nanoparticles. Sep. Sci. Technol. 49 (2020), 849-862. 
17.   M. Moradi, F. Ghanbari, Application of response surface method for coagulation process in leachate treatment as pretreatment for Fenton process : Biodegradability improvement. J. Water Process Eng. 4 (2014), 67–73. 
18. L. Ershadi Afshar, N. Chaibakhsh, Z. Moradi-Shoeili, Optimization of fenton advanced oxidation process for decolorization of dyecontaining wastewater by copper ferrite nanocatalyst. J. Color Sci. Tech. 11(2017), 91-98
19. L. M. Hernandez, Mucilage from chia seeds (Salvia hispanica): Microestructure, physico-chemical characteriza-tion and applications in food industry. Pontificia Universidad Catolica de Chile (Chile). 2012.
20.  J. Zhao, J. Liu, N. Li, W. Wang, J. Nan, Z. Zhao, F. Cui, Highly efficient removal of bivalent heavy metals from aqueous systems by magnetic porous Fe3O4-MnO2: Adsorption behavior and process study. Chem. Eng. J. 304 (2016), 737–746. 
21.  K. M. Koczkur, S. Mourdikoudis, L. Polavarapu, S. E. Skrabalak, Polyvinylpyrrolidone (PVP) in nanoparticle synthesis. Dalton Trans. 44 (2015), 17883-17905.
22.  F. Gholami-Borujeni, K. Naddafi, F. Nejatzade-Barandozi, Application of catalytic ozonation in treatment of dye from aquatic solutions. Desalin. Water Treat. 51 (2013), 6545–6551. 
23.  Y. Maghsoudlou, M. Sabaghi, M. Kashiri, Preparation and characterization of a biodegradable film comprising polyvinyl alcohol in balangu seed gum. J. Packag. Technol. Res. 3 (2019), 3–10. 
24.   M. Choudhary, M. B. Ray, S. Neogi, Evaluation of the potential application of cactus (Opuntia ficus-indica) as a bio-coagulant for pre-treatment of oil sands process-affected water. Sep. Purif. Technol. 209 (2019), 714–724. 
25. S. M. Mirbahoush, N. Chaibakhsh, Z. Moradi-Shoeili, Highly efficient removal of surfactant from industrial effluents using flaxseed mucilage in coagulation/photo-Fenton oxidation process. Chemosphere. 231 (2019), 51–59. 
26.  Q. Zhao, X. Huang, M. Zhou, Z. Ju, X. Sun, Y. Sun, Z. Huang, H. Li, T. Ma, Proton insertion promoted a polyfurfural/MnO2 nanocomposite cathode for a rechargeable aqueous Zn–MnO2 battery. ACS Appl. Mater. Interfaces. 12 (2020), 36072–36081. 
27. T. Arun, K. Prabakaran, R. Udayabhaskar, R. V. Mangalaraja, A. Akbari-Fakhrabadi, Carbon decorated octahedral shaped Fe3O4 and α-Fe2O3 magnetic hybrid nanomaterials for next generation supercapacitor applications. Appl. Surf. Sci. 485 (2019), 147–157. 
28.  R. Yang, Z. Wang, L. Dai, L. Chen, Synthesis and characterization of single-crystalline nanorods of α-MnO2 and γ-MnOOH. Mater. Chem. Phys. 93 (2005), 149-153.
29.  S. Mo, Q. Zhang, J. Li, Y. Sun, Q. Ren, S. Zou, Q. Zhang, J. Lu, M. Fu, D. Mo, J. Wu, H. Huang, D. Ye, Highly efficient mesoporous MnO2 catalysts for the total toluene oxidation: Oxygen-vacancy defect engineering and involved intermediates using in situ DRIFTS. Appl. Catal. B Environ. 264 (2020), 118464. 
30.  J. Liu, H. Liang, H. Wu, Hierarchical flower-like Fe3O4/MoS2 composites for selective broadband electromagnetic wave absorption performance. Compos. Part A Appl. Sci. Manuf. 130 (2020), 105760. 
31.  S. C. Ferreira, R. E. Bruns, H. S. Ferreira, G. D. Matos, J. M. David, G. C. Brandão, E. P. da Silva, L. A. Portugal, P. S. Dos Reis, A. S. Souza, W. N. L. Dos Santos, Box-Behnken design: an alternative for the optimization of analytical methods. Anal. Chim. Acta.  597 (2007), 179-186.
32.  T. Mano, S. Nishimoto, Y. Kameshima, M. Miyake, Investigation of photocatalytic ozonation treatment of water over WO3 under visible light irradiation. J. Ceram. Soc. Japan. 119 (2011), 822–827.
33. R. Tabaraki, N. Sadeghinejad, H. Poorajam, Study of dyes removal from binary system by hazelnut husk as agricultural waste by response surface methodology. J. Color Sci. Tech. 14(2020), 13-23.
34. L. Sumegová, J. Derco, M. Melicher, Influence of reaction conditions on the ozonation process. Acta Chim. Slov. 6 (2013), 168-172.
35. F. Shokoofehpoor, S. H. Mousavi, A. Mohammadi, M. A. Zanjanchi, γ-CD-Functionalized TiO2 nanoparticles for the photocatalytic degradation of organic dyes. Prog. Color Color. Coat. 13 (2020), 23-39.