مطالعه تخریب فراصوتی کاتالیزور نوری رنگزای اسید قرمز 37 با استفاده از نانوکامپوزیت@Zeolite MgO/g-C3N4

نوع مقاله : مقاله پژوهشی

نویسندگان

1 گروه مهندسی شیمی، دانشکده فنی و مهندسی، واحد اهر، دانشگاه آزاد اسلامی، اهر، ایران، صندوق پستی: 14515/775

2 گروه شیمی، دانشکده علوم پایه، واحد اهر، دانشگاه آزاد اسلامی، اهر، ایران، صندوق پستی: 14515/775

چکیده

هدف از این تحقیق بررسی تخریب فراصوتی کاتالیزور نوری رنگزا اسید قرمز 37(AR37)  با استفاده از نانوکامپوزیت MgO/g-C3N4@Zeolite بود. در این تحقیق، نانوکامپوزیت MgO/g-C3N4/Zeolite سنتز شده و با دستگاه‌های پراش پرتو ایکس (XRD)، طیف‌سنجی تبدیل فوریه زیر ‌قرمز (FTIR)، میکروسکوپ الکترونی روبشی گسیل میدانی (FESEM)، اسپکتروسکوپی پراش انرژی (EDS) و Dot mapping شناسایی شد. نانوکامپوزیت سنتز شده به‌عنوان کاتالیزور نوری برای تخریب رنگ اسید قرمز 37 در محلول‌های آب تحت نور UV و امواج فراصوت به کار رفت. عوامل مؤثر بر فرآیند حذف رنگ شامل زمان واکنش، pH محلول، غلظت اولیه رنگ و مقدار نانوکامپوزیت بررسی شدند. نتایج نشان داد که درصد حذف رنگ با افزایش زمان واکنش، pH محلول و مقدار نانوکامپوزیت افزایش و با افزایش غلظت اولیه رنگ کاهش می‌یابد. بیشینه درصد حذف در زمان واکنش 50 دقیقه،pH  محلول 10، غلظت اولیه رنگ 10 میلی‌گرم بر لیتر و مقدار کاتالیزور 0.25 گرم بر 500 میلی‌لیتر، به 72.36 درصد رسید.

کلیدواژه‌ها


عنوان مقاله [English]

Study of Sonophotocatalytic Degradation of Acid Red 37 Dye Using MgO/g-C3N4@Zeolite Nanocomposite

نویسندگان [English]

  • E. Fathi 1
  • F. Derakhshan fard 1
  • P. Gharbani 2
  • Z. Ghazi Tabatabaei 2
1 Department of Chemical Engineering, Ahar Branch, Islamic Azad University, P.O. Box: 775/14515, Ahar, Iran
2 Department of Chemistry, Ahar Branch, Islamic Azad University, P.O. Box: 775/14515, Ahar, Iran
چکیده [English]

This research aimed to study sonophotocatalytic degradation of Reactive Orange 16 dye (RO16) by MgO/g-C3N4@Zeolite nanocomposite. MgO/g-C3N4/Zeolite nanocomposite was synthesized and characterized using the following methods: X-ray diffraction (XRD), fourier-transform infrared spectroscopy (FTIR), field emission scanning electron microscopy (FESEM), energy dispersive spectroscopy (EDS) and dot mapping. The synthesized nanocomposite was used as a photocatalyst to degrade RO16 dye aqueous solution. The tests were performed under UV light and ultrasound irradiation. The effect of main factors on the removal of the dye, such as reaction time, solution pH, initial dye concentration, and nanocomposite dosage, were investigated. Results demonstrated that the percentage of dye removal was increased by raising the reaction time, the solution pH, and nanocomposite dosage and decreased by increasing the initial dye concentration. The maximum removal percentage reached 72.36 % at a reaction time of 50 min., pH of 10, initial dye concentration of 10 mg/L, and nanocomposite dosage of 0.25 g/500mL.

کلیدواژه‌ها [English]

  • MgO/g-C3N4@Zeolite nanocomposite
  • Sonophotocatalyst
  • Acid Red 37 dye
  • degradation
  1. C. De Benedetto, A. Macario, C. Siciliano, B. Nagy J, P. De Luca, Adsorption of reactive blue 116 dye and reactive yellow 81 dye from aqueous solutions by multi-walled carbon nanotubes. Mater. 12(2020), 2757.
  2. M. A. Khan, M. Siddique, F. Wahid, R. Khan, Removal of reactive blue 19 dye by sono, photo and sonophotocatalytic oxidation using visible light. Ultrason. Sonochem. 26(2015), 370-377.
  3. A. Lopez, JS. Pic, H. Debellefontaine, Ozonation of azo dye in a semi-batch reactor: A determination of the molecular and radical contributions. Chemosphere. 11(2007), 2120-2126.
  4. D. D. Asouhidou, K. S. Triantafyllidis, N. K. Lazaridis, K. A. Matis, S. S. Kim, T. J. Pinnavaia, Sorption of reactive dyes from aqueous solutions by ordered hexagonal and disordered mesoporous carbons. Microporous Mesoporous Mater. 1-2(2009), 257-267.
  5. Z. Saberi, S. Sharifi, A. Makhdoumi, E. Asadi, Kh. Alizadeh, Study of Bio-decolorization of Xanthene dyes using Spore Laccase based on Laser Spectroscopy. Journal of Color Science and Technology. (2021), JCST-2008-1107.
  6. M. Rezaei, F. Hosseini Shekarabi, M. Varsei, A. Samiee Bayragh, Investigating And Comparing Removal Of Acid Red 37 With The Electrofenton And Electrocoagulation Processes. Environ. Sci. 13(2016), 85-96.
  7. V. Khandegar, A. K. Saroha, Electrochemical treatment of textile effluent containing Acid Red 131 dye. J. Hazard. Toxic, Radioact. Waste. 1(2013) 38-44.
  8. E. Cheikh S’Id, A. Kheribech, M. Degué, Z. Hatim, R. Chourak, C. M’Bareck, Removal of Methylene Blue from Water by Polyacrylonitrile-Co-Sodium Methallylsulfonate Copolymer (AN69) and Polysulfone (PSf) Synthetic Membranes. Prog. Color, Colorants Coat. 14 (2021), 89-100.
  9. S. Sadat Gujarati, M. Hajisafari, M. M. Khosravirad ,Comparison of Zinc Oxide Nanoparticle Performance Extracted from Leaching Residue of Zinc Melting Factory with Merck Zinc Oxide Nanoparticle in Bleaching from NB21 Color under UV Rays. J. Color Sci. Technol. 14(2020), 163-172.
  10. C. Lops, A. Ancona , K. D. Cesare, B. Dumontel, N. Garino, G. Canavese, S. Hérnandez, V. Cauda, Sonophotocatalytic degradation mechanisms of Rhodamine B dye via radicals generation by micro-and nano-particles of ZnO. Appl. Catal. B-Environ. 243(2019), 629-640.
  11. B. Hazizadeh Fard, R. Ranjineh Khojasteh, P. Gharbani, Preparation and Characterization of Visible-Light Sensitive Nano Ag/Ag3 VO4/AgVO3 Modified by Graphene Oxide for Photodegradation of Reactive Orange 16 Dye. J. Inorg. Organomet. Polym. Mater. 3(2018), 1149-1157.
  12. A. H. Jawad, N. N. Abd Malek, A. S. Abdulhameed, R. Razuan, Synthesis of Magnetic Chitosan-Fly Ash/Fe3O4 Composite for Adsorption of Reactive Orange 16 Dye: Optimization by Box–Behnken Design. J. Polym. Environ. 3(2020), 1068-1082.
  13. M. Malakootian, M. R. Heidari, Reactive orange 16 dye adsorption from aqueous solutions by psyllium seed powder as a low-cost biosorbent: kinetic and equilibrium studies. Appl. Water Sci. 7(2018), 1-9.
  14. P. A. Bedekar, R. G. Saratale, G. D. Saratale, S. P. Govindwar, Oxidative stress response in dye degrading bacterium Lysinibacillus sp. RGS exposed to Reactive Orange 16, degradation of AR37 and evaluation of toxicity. Environ. Sci. Pollution Res. 18(2014), 11075-11085.
  15. J. Park, J. Joo, S. G. Kwon, Y. Jang, T. Hyeon, Synthesis of monodisperse spherical nanocrystals. Angew. Chem. Int. Ed. 25(2007), 4630-4660.
  16. S. Jorfi, G. Barzegar, M. Ahmadi, R. D. Soltani, A. Takdastan, R. Saeedi, M. Abtahi, Enhanced coagulation-photocatalytic treatment of Acid red 73 dye and real textile wastewater using UVA/synthesized MgO nanoparticles. J. Environ. Manag. 177(2016), 111-118.
  17. M. Ghaemizade, M. Khajeh Mehrizi , Application of Photocatalysts and Their Effective Parameters in the Treatment of Colored Wastewaters. J. Studies in Color World. 9 (1398), 9-21.
  18. P. Kardar, R. Amini, Studying the Active Corrosion Inhibition Effect of the Ce3+/2-Mercaptobenzothiazole Loaded NaY Zeolite/Zn-Al LDH Based Containers in a Silane Coating. Prog. Color, Colorants Coat. 15 (2022), 1-9.
  19. N. Mao, J. X. Jiang, MgO/g-C3N4 nanocomposites as efficient water splitting photocatalysts under visible light irradiation. Appl. Surf. Sci. 476 (2019). 144-150.
  20. H. Zou, X. Yan, J. Ren, X. Wu, Y. Dai, D. Sha, J. Liu, Photocatalytic activity enhancement of modified g-C3N4 by ionothermal copolymerization. J. Mater. 4(2015), 340-347.
  21. S. F. Bdewi, O. G. Abdullah, B. K. Aziz, A. A. Mutar, Synthesis, structural and optical characterization of MgO nanocrystalline embedded in PVA matrix. J. Inorg. Org. Polym. Mater. 2(2016), 326-334.
  22. L. Ge, Z. Peng, W. Wang, F. Tan, X. Wang, B. Su, P. K. Wong, gC3N4/MgO nanosheets: light-independent, metal-poisoning-free catalysts for the activation of hydrogen peroxide to degrade organics. J. Mater. Chem. A. 34(2018), 16421-16429.
  23. Z. Mengyue, C. Shifu, T. Yaowu, Photocatalytic degradation of organophosphorous pesticides using thin films of TiO2. J. Chem. Tech Biotech. 64(1995), 339–344.
  24. R. Dutta, T. V. Nagarjuna, S. A. Mandavgane, J. D. Ekhe, Ultrafast removal of cationic dye using agrowaste-derived mesoporous adsorbent. Ind. Eng. Chem. Res. 48(2014), 18558-18567.
  25. N. Esfandiar, B. Nasernejad, T. Ebadi, Removal of Mn (II) from groundwater by sugarcane bagasse and activated carbon (a comparative study): application of response surface methodology (RSM). J. Ind. Eng. Chem. 5(2014), 3726-3736.
  26. N. Sapawe, A. A. Jalil, S. Triwahyono, M. I. Shah, R. Jusoh, N. F. Salleh, B. H. Hameed, A. H. Karim, Cost-effective microwave rapid synthesis of zeolite NaA for removal of methylene blue. Chem. Eng. J. 229(2013), 388-398.
  27. R. C. Hsiao, L. Roselin, H.L. Hsu, R. Selvin, R.S. Juang, Photocatalytic degradation of reactive orange 16 dye over Au-doped TiO2 in aqueous suspension. Int. J. Mater. Eng. Innovation. 1(2011), 96-108.
  28. G. Asgari, A. Seid Mohammadia, Mortazavib SM, Ramavandic B. Investigation on the pyrolysis of cow bone as a catalyst for ozone aqueous decomposition: Kinetic approach. J. Anal. Appl. Pyrolysis. 99(2013), 149-154.
  29. B. Kasprzyk-Hordern, M. Ziółek, J. Nawrocki, Catalytic ozonation and methods of enhancing molecular ozone reactions in water treatment. Appl. Catal. B. 4(2003), 639-669.
  30. A. Toghan, A. Modwi, Boosting unprecedented indigo carmine dye photodegradation via mesoporous MgO@ g-C3N4 nanocomposite. J. Photochem. Photobiol. A 419 (2021), 113467.
  31. L. Xu, X. Zhou, G. Wang, L. Zhou, X. Sun, Catalytic degradation of acid red B in the system of ultrasound/peroxymonosulfate/Fe3O4. Sep. Purif. Technol. 276 (2021), 119417.
  32. Y. Panahian, N. Arsalani, R. Nasiri, Enhanced photo and sono,photo degradation of crystal violet dye in aqueous solution by 3D flower like F-TİO2(B)/ fullerene under visible light. J. Photochem. Photobiol Chem. 365(2018), 45-51.
  33. L. Ghalamchi, S. Aber, An aminated silver orthophosphate/graphitic carbon nitride nanocomposite: An efficient Visible light sonophotocatalyst. Mater. Chem. Phys. 256(2020), 123649.
  34. Z. Xiu, H. Bo, Y. Wu, X. Hao, Graphite-like C3N4 modified Ag3PO4 nanoparticles with highly enhanced photocatalytic activities under visible light irradiation. Appl. Surf. Sci. 289 (2014), 394–399.
  35. S. V. P. Vattikuti, P. A. K. Reddy, J. Shim, C. Byon, Visible-light-driven photocatalytic activity of SnO2-ZnO quantum dots anchored on g-C3N4 nanosheets for photocata-lytic pollutant degradation and H2 production. ACS Omega. 7 (2018a), 7587–7602.
  36. S. V. P. Vattikuti, C. Byon, Hydrothermally synthesized ternary heterostructured MoS2/AL2O3/g-C3N4 phoyocatalyst. Mater. Res. Bull. 96(2017), 233-245.
  37. P. C. Nagajyothi, M. Pandurangan, S. V. P. Vattikuti, C. O. Tettey, T. V. M. Sreekanth, J. Shim, Enhanced photocatalytic activity of Ag/g-C3N4 composite. Sep. Purif. Technol. 188(2017), 228–237.
  38. L. hi, Yao, W. Si, One step to prepare CNTs modified porous g-C3N4 with excel-lent visible-light photocatalytic performance. J. Mater. Sci. Mater. Electron. 30(2019), 1714-1723.
  39. X. Zhang, W. Liang, Z. Lu, B. Hu, Highly efficient enrichment mechanism of U(VI) and Eu(III) by convalent organic frameworks with intramolecular hydrogen-bonding from solutions. Appl. Surf. Sci. 504(2020), 144403.
  40. H. Ghafuri, A. Rashidizadeh, Z. T. Mohammadi, Facile preparation of CuS-g-C3N4/Ag nanocomposite with improved photocatalytic activity for the degradation of rhodamine B. Polyhedron. 179(2020), 11436841.
  41. Y. Ye, H. Yang, X. Wang, W. Feng, Photocatalytic, Fenton and photo-Fenton degradation of RhB over Z-scheme g-C3N4/LaFeO3 heterojunction photocatalysts. Mater. Sci. Semicond Process. 82(2018), 14-24.
  42. A. Habibi-Yangjeh, A. Akhundi, Novel ternary g-C3N4/Fe3O4/Ag2CrO4 nanocomposites: magnetically separable and visible-light-driven photocatalysts for degradation of water pollutants[J]. J. Mol. Catal. A Chem. 415(2016), 122–130.
  43. S. A. Barman, S. Basu, Complete removal of endocrine compound and toxic dye by visible light active porous g,C3N4/H-ZSM-5 nanocomposite. Chemosphere. 241(2020), 124981.
  44. F. Yi, J. Ma, C. Lin, L. Wang, H. Zhang, Y. Qian, k. Zhang, insights into the enhanced adsorption/photocatalysis mechanism of a Bi4O5Br2/g-C3N4 nanosheet. J. Alloys Compd. 821(2020), 153557.
  45. J. Qu, Y. Du, Y. Feng, J. Wang, B. He, M. Du, Y. Liu, N. Jiang, Visible-light responsive K-doped g-C3N4/BiOBr hybrid photocatalyst with highly efficient degradation of Rhodamine B and tetracycline. Mater. Sci. Semicond. Process. 112(2020), 105023.
  46. X. Liu, Y. Liu, Q. Zhong, X. Ma, In situ self-assembly of 3D hierarchical 2D/2D CdS/g-C3N4 hereojunction with excellent photocatalytic performance. Mater. Sci. Semicond. Process. 105(2020), 104734.
  47. R. Zhang, S. Niu, X. Zhang, Z. Jiang, J. Zheng, C. Cuo, Combination of experimental and theorecital investigation on Ti-doped g-C3N4 with improved photo-catalytic activity. Appl. Surf. Sci. 489, 427-434.
  48. W. Tao, M. Wang, R. Ali, S. Nie, Q. Zeng, R. Yang, W. Lau, L. He, H. Tang, X. Jian, Multi-layered porous hierarchical TiO2/g-C3N4 hybrid coating for enhanced visible light photocatalysis. Appl. Surf. Sci. 495(2019), 143435.
  49. H. He, Z. Luo, C. Yu, Diatomite-anchored g-C3N4 nanosheets for selective removal of organic dyes. J. Alloys Compd. 816(2020), 152652.