ارزیابی سازوکار رنگ‌زدایی پساب رنگی دوجزئی طی فرآیند تصفیه در پیل سوختی میکروبی

نوع مقاله : مقاله پژوهشی

نویسندگان

گروه مهندسی نساجی، دانشکده فنی، دانشگاه گیلان، صندوق پستی: 41635-3756

چکیده

پساب رنگی صنایع نساجی در ردیف ترکیبات سمی طبقه‌بندی می‌شود و رهاسازی آنها به طبیعت آسیب‌های شدیدی را به محیط‌زیست وارد می‌سازد. یکی از فناوری‌های جدید جهت تصفیه پساب نساجی، استفاده از پیل سوختی میکروبی می‌باشد. در این پژوهش، سازوکار رنگزدایی پساب حاوی مخلوط دوتایی از رنگزاهای ری‌اکتیو آبی 4 و اسید قرمز 88 در پیل سوختی میکروبی توسط روش‌های طیف‌سنجی چونUV-Vis ، FTIR وCOD بررسی شد. نتایج نشان داد که در روز اول فرآیند رنگ‌زدایی سریع انجام شد که می‌تواند به جذب سطحی زیستی توسط سلول‌های مخمر و سازوکار تجمع زیستی نسبت داده شود. همچنین با بررسی طیفFTIR ، نشانه‌هایی از رنگ‌زدایی از طریق سازوکار تجزیه زیستی در روزهای چهارم و پنجم نیز مشاهده گردید. درصد رنگ‌زدایی نهایی پس از 5 روز بین دو رنگ متفاوت بود و برای اسید قرمز 88، 96 و برای ری‌اکتیو آبی 4 ،85 گزارش شد. درصد حذفCOD  نهایی پساب نیز 87 به دست آمد.

کلیدواژه‌ها


عنوان مقاله [English]

Evaluation of Decolorization Mechanism of Bicomponent Dye Wastewater During Treatment in the Microbial Fuel Cell

نویسندگان [English]

  • M. Kanafchian
  • B. Noroozi
  • M. Akbari Dogolsar
Textile engineering department, University of Guilan, P.O. Box: 41635- 3756, Rasht, Iran
چکیده [English]

The textile dyeing industries' wastewater is classified as a highly toxic composition of toxic compounds, and their release into the environment causes a severe biotic risk to the ecosystem. Microbial fuel cell (MFC) is a promising technology for treating textile wastewater and corresponding electricity generation. This work studied the decolorization mechanism of Reactive Blue 4 (RB4) and acid Red 88 (AR88) dyes in the binary mixture in an MFC using baker's yeast. The decolorization of dyes was analyzed using spectrophotometry methods: UV-Vis, FTIR, and COD measurements. The results showed that the decolorization on the first day was taken place very fast, which can be attributed to biosorption and bioaccumulation mechanisms. Analyzing the FTIR spectrum revealed that the decolorization was also caused by biological decomposition on the fourth and fifth days. The decolorization efficiency for the two dyes differed after the fifth day, and the final decolorization of AR88 and RB4 was 96 % and 85 %. The COD removal of synthetic wastewater from treatment was 87 %.

کلیدواژه‌ها [English]

  • Microbial fuel cell
  • Decolorization mechanism
  • Dye
  • Bicomponent wastewater
  1. E. Jalilnejad, M. Alizadeh, S. Fakhraddin fakhriazar, Application of biological methods in decolorization of azo dye containing wastewaters. J. Stud. Color World. 8(2018), 27-40.
  2. T. Khodadadi, E. Solgi, S. Mortazavi, H. Nourmoradi, Comparison of advanced oxidation methods (AOPs) of persulfate in removal of color in municipal wastewater. J. Color Sci. Tech. 15(2021), 215-223.
  3. Y. Cao, H. Mu, W. Liu, R. Zhang, J. Guo, M. Xian, H. Liu, Electricigens in the anode of microbial fuel cells: pure cultures versus mixed communities. Microb. Cell. Fact. 18(2019), 1-4.
  4. S. Prajapati, P. S. Yelamarthi, Microbial fuel cell‐assisted Congo red dye decolorization using biowaste‐derived anode material. Asia-Pac. J. Chem. Eng. 15(2020), e2558.
  5. S. Mishra, J. K. Nayak, A. Maiti, Bacteria-mediated bio-degradation of reactive azo dyes coupled with bio-energy generation from model wastewater. Clean Technol. Envirn. 21(2020), 1-7.
  6. A. H. de Oliveira, J. J. Alcaraz-Espinoza, M. M. da Costa, M. L. Nascimento, T. M. Swager, H. P. de Oliveira, Improvement of Baker's yeast-based fuel cell power output by electrodes and proton exchange membrane modification. Mater. Sci. Eng. C. 105(2019), 110082.
  7. Z. Kiayi, T. B. Lotfabad, A. Heidarinasab, F. Shahcheraghi, Microbial degradation of azo dye carmoisine in aqueous medium using Saccharomyces cerevisiae ATCC 9763. J. Hazard. Mater. 373(2019), 608-19.
  8. I. P. Sari, K. Simarani, Decolorization of selected azo dye by Lysinibacillus fusiformis W1B6: Biodegradation optimization, isotherm, and kinetic study biosorption mechanism. Adsorp. Sci. Technol. 37(2019), 492-508.
  9. M. Taskin, S. Erdal, Reactive dye bioaccumulation by fungus Aspergillus niger isolated from the effluent of sugar fabric-contaminated soil. Toxicol. Ind. Health. 26(2010), 239-47.
  10. E. J. de Almeida, A. R. de Andrade, C. R.Corso, Evaluation of the Acid Blue 161 dye degradation through electrochemical oxidation combined with microbiological systems. Int. J. Environ. Sci. Technol. 16(2019), 8185-8196.
  11. F. B. Freire, E. C. Pires, J. T. Freire, Influência da imobilização de biomassa e do tamanho da partícula na fluidodinâmica de um reator anaeróbio de leito fluidizado. Acta Sci. Technol. 30(2008), 73-81.
  12. Standard Methods for the Examination of Water and Wastewater, 22nd Washington, USA: American Public Health Association (APHA), 2012.
  13. R. C. Hirt, F. T. King, R. G.Schmitt, Graphical absorbance-ratio method for rapid two-component spectrophotometric analysis. Anal. Chem. 26(1954), 1270-3.
  14. P. Saravanan, S. Kumaran, S. Bharathi, P. Sivakumar, P. Sivakumar, S. R Pugazhvendan., W. Aruni, S. Renganathan, Bioremediation of synthetic textile dyes using live yeast Pichia pastoris. Environ. Technol. Innov. 22(202),101442.
  15. M. Z. Khan, S. Singh, S. Sultana, T. R. Sreekrishnan, S. Z. Ahammad, Studies on the biodegradation of two different azo dyes in bioelectrochemical systems. New J. Chem. 39(2015), 5597-604.
  16. L. Zhou, J. Jin, Z. Liu, X. Liang, C. Shang, Adsorption of acid dyes from aqueous solutions by the ethylenediamine-modified magnetic chitosan nanoparticles. J. Hazard. Mater. 185(2011), 1045-52.
  17. W. E. Thung, S. A. Ong, L. N. Ho, Y. S. Wong, F. Ridwan, H. K. Lehl, Y. L. Oon, Y. S. Oon, Biodegradation of Acid Orange 7 in a combined anaerobic-aerobic up-flow membrane-less microbial fuel cell: Mechanism of biodegradation and electron transfer. Chem. Eng. J. 336(2018), 397-405.
  18. G. Kyazze, P. Mani, K. Bowman, N. Farahmand, M. Breheny, T. Keshavarz, Degradation of azo dye (Acid orange 7) in a microbial fuel cell: comparison between anodic microbial-mediated reduction and cathodic laccase-mediated oxidation. Front. Energy Res. 7(2019), 101.
  19. S. Varjani, P. Rakholiya, H. Y. Ng, S. You, J. A.Teixeira, Microbial degradation of dyes: an overview. Bioresour. Technol. 314(2020), 123728.
  20. S. K. Sen, P. Patra, C. R. Das, S. Raut, S. Raut, Pilot-scale evaluation of bio-decolorization and biodegradation of reactive textile wastewater: an impact on its use in irrigation of wheat crop. Water Res. Ind. 21(2019), 100106.
  21. P. D. Shah, S. R. Dave, M. S. Rao, Enzymatic degradation of textile dye Reactive Orange 13 by newly isolated bacterial strain Alcaligenes faecalis PMS-1. Int. Biodeterior. Biodegrad. 69(2012), 41–50.
  22. S. Khalid, F. Alvi, Fatima M, Aslam M, Riaz S, Farooq R, Zhang Y. Dye degradation and electricity generation using microbial fuel cell with graphene oxide modified anode. Mater. Lett. 220(2018), 272-276