حذف ماده رنگزای کاتیونی با استفاده ازنانوذرات مغناطیس و الکترودهای کربنی اصلاح شده با اکسیدگرافن احیا شده به روش الکتروفنتون ناهمگن

نوع مقاله : مقاله پژوهشی

نویسندگان

دانشکده مهندسی نساجی، دانشگاه صنعتی امیرکبیر، تهران، ایران

چکیده

در این پژوهش، حذف ماده رنگزای کاتیونی متیلن آبی با استفاده از روش الکتروفنتون ناهمگن مورد مطالعه قرار گرفت. بدین منظور از الکترودهای کربنی اصلاح شده با اکسیدگرافن احیاشده، استفاده شد. اکسید گرافن ابتدا به روش هامر تولید شد و سپس توسط احیاکننده‌های شیمیایی به اکسید گرافن احیاشده تبدیل گردید. به منظور تولید یون‌های Fe+2 و Fe+3 که منجر به تولید ذرات فعالی مانند رادیکال هیدروکسیل و آب اکسیژنه می‌شود، از نانو ذرات مغناطیسی Fe3O4 استفاده شد. از Na2SO4 به عنوان الکترولیت برای افزایش جریان درون محلول استفاده شد. همچنین عوامل تاثیرگذار بر روی فرآیند الکتروفنتون مانند pH، جریان محلول (میلی‌آمپر)، مقدار نانوذرات مغناطیس (mg/l) و غلظت ماده رنگزا (mg/l) مورد بررسی قرار گرفت. نتایج حاصل از آزمایشات رنگبری نشان داد که الکترود اصلاح شده، قابلیت بالایی در حذف مواد رنگزای کاتیونی در pH های اسیدی و قلیایی دارد. به طوری که قادر به حذف ماده رنگزا با بازده 99 % در pH اسیدی و بازده 98 % در pH قلیایی در مدت زمان 120 دقیقه است. مقدار بهینه برای pH، غلظت ماده رنگزا، جریان و مقدار نانوذرات مغناطیس به ترتیب 3، 10 mg/l، 0.06 آمپر و 0.08 گرم به­دست آمد. همچنین برای نشان دادن موفقت‌آمیز بودن اصلاح الکترود کربنی در بالا بردن انتقال الکترونی بین محلول و الکترود از آزمون ولتامتری چرخه‌ای استفاده شد. 

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Discoloration of Cationic Dye by Using Reduced Graphene Oxide Modified Carbon Electrode and Magnetite Nanoparticles Within Heterogeneous Electro-fenton Process

نویسندگان [English]

  • A. Gholami Akerdi
  • S. H. Bahrami
  • M. Arami
  • N. Noormohammadi
Textile Engineering Department, Amirkabir University of Technology,, Tehran, Iran
چکیده [English]

In the present research, heterogeneous electro-fenton operation was employed to remove methylene blue (MB) as a cationic dye. To reach the purpose, we used a reduced graphene oxide (rGO) modified carbon electrode. At first, GO was synthesized using modified Hummer’s method, and then rGO nanoparticles were obtained by reducing GO using reducing agents such as hydrazine and ammonia. In order to produce Fe+2 and Fe+3, magnetite nanoparticles (Fe3O4) have been synthesized. Na2SO4 salt was used as an electrolyte to enhance electrical current. And also, some effective parameters such as pH, electrical current, Fe3O4 value and pollutant concentration were studied. The dye removal results showed that the modified electrode has a high potential for cationic dye removal in acidic and alkaline pH so that it can remove MB 99 and 98% in acidic and alkaline pH, respectively. Optimum conditions for dye concentration, magnetic amount, current intensity and pH were 10 mg/L, 0.08 g, 0.06 A and 3, respectively. Furthermore, cyclic voltammetry and dye removal tests were done. The two comparative tests were carried out in order to exhibit more electron transfer capability of the modified electrode than the bare electrode.

کلیدواژه‌ها [English]

  • Cationic dye
  • Magnetic nanoparticles
  • Reduced graphene oxide
  • Heterogeneous electrofenton
  1. O. Iglesias, M. F. de Dios, T. Tavares, M. Sanromán, M. Pazos, Heterogeneous electro-Fenton treatment: preparation, characterization and performance in groundwater pesticide removal. J. Ind. Eng. Chem. 27 (2015), 276-282.
  2. ع. غ. آکردی، س. ه. بهرامی، م. آرامی، ا. پژوتن، حذف کاتالیزوری نوری ماده رنگزا توسط الکترود اصلاح ‌شده با نانو ذرات دی‌اکسیدتیتانیم-اکسیدگرافن و بهینه‌سازی به روش رویه -پاسخ. نشریه علمی علوم و فناوری رنگ. 3 (1396)، 202-187.
  3. A. Ajmal, I. Majeed, R. N. Malik, H. Idriss, M. A. Nadeem, Principles and mechanisms of photocatalytic dye degradation on TiO2 based photocatalysts: a comparative overview. Rsc Advances. 4 (2014), 37003-37026.
  4. K. Radha, V. Sridevi, K. Kalaivani, Electrochemical oxidation for the treatment of textile industry wastewater. Bioresource Technol. 100 (2009), 987-990.
  5. A. Sharma, B. K. Lee, Synthesis and characterization of anionic/nonionic surfactant-interceded iron-doped TiO2 to enhance sorbent/photo-catalytic properties. J. Solid State Chem. 229 (2015), 1-9.
  6. Shamsi Kasmaei , M. K. Rofouei, M. E. Olya , S. Ahmed Kinetic and Thermodynamic Studies on the Reactivity of Hydroxyl Radicals in Wastewater Treatment by Advanced Oxidation Processes Prog. Color Colorants Coat. 13 (2020), 1-10
  7. Seidmohammadi, Gh. Asgari , A. Dargahi , M. Leili , Y. Vaziri , B. Hayati  , A. A. Shekarchi , A.Mobarakian  , A. Bagheri , S. B. Nazari Khanghah , A. Keshavarzpour A Comparative Study for the Removal of Methylene Blue Dye from Aqueous Solution by Novel Activated Carbon Based Adsorbents Prog. Color Colorants Coat. 12 (2019), 133-144
  8. A. F. Caliman, C. Cojocaru, A. Antoniadis, I. Poulios, Optimized photocatalytic degradation of Alcian Blue 8 GX in the presence of TiO2 suspensions. J. Hazard. Mater. 144 (2007), 265-273.
  9. F. He, W. Hu, Y. Li, Biodegradation mechanisms and kinetics of azo dye 4BS by a microbial consortium. Chemosphere. 57 (2004), 293-301.
  10. W. Liu, Z. Ai, L. Zhang, Design of a neutral three-dimensional electro-Fenton system with foam nickel as particle electrodes for wastewater treatment. J. Hazard. Mater. 243 (2012) 257-264.
  11. ا. اسلامی، م. مرادی، ف. قنبری، ح. راعی شکتایی، بررسی عملکرد فرآیند الکتروفنتون برای حذف رنگ از فاضلاب واقعی نساجی براساس شاخص ADMI، نشریه علمی علوم و فناوری رنگ، (1392)، 180-173.
  12. L. Xu, J. Wang, Magnetic nanoscaled Fe3O4/CeO2 composite as an efficient fenton-like heterogeneous catalyst for degradation of 4-chlorophenol. Environ. Sci. Technol. 46 (2012), 10145-10153.
  13. ا. وکیلی تجره، ح. گنجی‌دوست، ب. آیتی، حذف کاتالیزوری نوری ماده رنگزای آزویی اسید قرمز 14 از آب به‌وسیله نانوکامپوزیت مغناطیسیTiO2/Fe3O4/CNT نشریه علمی علوم و فناوری رنگ. 1 (1398)، 87-75.
  14. C. Zhang, M. Zhou, G. Ren, X. Yu, L. Ma, J. Yang, F. Yu, Heterogeneous electro-Fenton using modified iron–carbon as catalyst for 2, 4-dichlorophenol degradation: Influence factors, mechanism and degradation pathway. Water Res. 70(2015), 414-424.
  15. M. S. Yahya, N. Oturan, K. El Kacemi, M. El Karbane, C. Aravindakumar, M. A. Oturan, Oxidative degradation study on antimicrobial agent ciprofloxacin by electro-Fenton process: kinetics and oxidation products. Chemosphere. 117(2014), 447-454.
  16. K. Ayoub, S. Nélieu, E. D. Van Hullebusch, J. Labanowski, I. Schmitz-Afonso, A. Bermond, M. Cassir, Electro-Fenton removal of TNT: Evidences of the electro-chemical reduction contribution. Appl. Catal. B: Environ. 104 (2011), 169-176.
  17. S. Song, M. Wu, Y. Liu, Q. Zhu, P. Tsiakaras, Y. Wang, Efficient and Stable Carbon-coated Nickel Foam Cathodes for the Electro-Fenton Process. Electrochim. Acta. 176 (2015), 811-818.
  18. J. Shen, Y. Li, Y. Zhu, Y. Hu, C. Li, Aerosol synthesis of Graphene-Fe3O4 hollow hybrid microspheres for heterogeneous Fenton and electro-Fenton reaction. J. Environ. Chem. Eng. 4 (2016), 2469-2476.
  19. B. Zhao, G. Mele, I. Pio, J. Li, L. Palmisano, G. Vasapollo, Degradation of 4-nitrophenol (4-NP) using Fe–TiO2 as a heterogeneous photo-Fenton catalyst. J. Hazard. Mater. 176 (2010), 569-574.
  20. M. Wang, G. Fang, P. Liu, D. Zhou, C. Ma, D. Zhang, J. Zhan, Fe3O4@ β-CD nanocomposite as heterogeneous Fenton-like catalyst for enhanced degradation of 4-chlorophenol-4 (CP), Applied Catalysis B: Environmental, 188 (2016), 113-122.
  21. W. Wang, Y. Liu, T. Li, M. Zhou, Heterogeneous Fenton catalytic degradation of phenol based on controlled release of magnetic nanoparticles. Chem. Eng. J. 242 (2014), 1-9.
  22. E. Rosales, M. Pazos, M. Longo, M. Sanromán, Electro-Fenton decoloration of dyes in a continuous reactor: a promising technology in colored wastewater treatment. Chem. Eng. J. 155 (2009) 62-67.
  23. P. Nidheesh, R. Gandhimathi, Trends in electro-Fenton process for water and wastewater treatment: an overview. Desalination. 299 (2012), 1-15.
  24. S. Kourdali, A. Badis, A. Boucherit, Degradation of direct yellow 9 by electro-Fenton: Process study and optimization and, monitoring of treated water toxicity using catalase. Ecotoxicol. Environ. Saf. 110 (2014), 110-120.
  25. H. Zhang, C. Fei, D. Zhang, F. Tang, Degradation of 4-nitrophenol in aqueous medium by electro-Fenton method. J. Hazard. Mater. 145 (2007), 227-232.
  26. M. Sudoh, H. Kitaguchi, K. Koide, Electrochemical production of hydrogen peroxide by reduction of oxygen. J. Chem. Eng. Japan. 18 (1985), 409-414.
  27. A. ElMekawy, H. M. Hegab, D. Losic, C. P. Saint, D. Pant, Applications of graphene in microbial fuel cells: The gap between promise and reality. Renewable Sustainable Energy Rev.  (2016).
  28. C. M. van Genuchten, S. R. Bandaru, E. Surorova, S. E. Amrose, A. J. Gadgil, J. Peña, Formation of macroscopic surface layers on Fe (0) electrocoagulation electrodes during an extended field trial of arsenic treatment. Chemosphere. 153 (2016) 270-279.
  29. C. Gao, Z. Guo, J.-H. Liu, X.-J. Huang, The new age of carbon nanotubes: An updated review of functionalized carbon nanotubes in electrochemical sensors. Nanoscale. 4 (2012), 1948-1963.
  30. S. Song, L. Zhan, Z. He, L. Lin, J. Tu, Z. Zhang, J. Chen, L. Xu, Mechanism of the anodic oxidation of 4-chloro-3-methyl phenol in aqueous solution using Ti/SnO2–Sb/PbO2 electrodes, J. Hazard. Mater. 175 (2010), 614-621.
  31. R. K. Upadhyay, N. Soin, G. Bhattacharya, S. Saha, A. Barman, S.S. Roy, Grape extract assisted green synthesis of reduced graphene oxide for water treatment application. Mater. Lett. 160 (2015), 355-358.
  32. Y. Cong, M. Long, Z. Cui, X. Li, Z. Dong, G. Yuan, J. Zhang, Anchoring a uniform TiO2 layer on graphene oxide sheets as an efficient visible light photocatalyst. Appl. Surf. Sci. 282 (2013), 400-407.
  33. K. Chen, G. H. Wang, W. B. Li, D. Wan, Q. Hu, L. L. Lu, Application of response surface methodology for optimization of Orange II removal by heterogeneous Fenton-like process using Fe3O4 nanoparticles. Chinese Chem. Lett. 25 (2014), 1455-1460.
  34. L. Hou, Q. Zhang, F. Jérôme, D. Duprez, H. Zhang, S. Royer, Shape-controlled nanostructured magnetite-type materials as highly efficient Fenton catalysts. Appl. Catal. B: Environ. 144 (2014) 739-749.
  35. S. Valizadeh, M. Rasoulifard, M. S. Dorraji, Modified Fe3O4-hydroxyapatite nanocomposites as heterogeneous catalysts in three UV, Vis and Fenton like degradation systems. Appl. Surf. Sci. 319 (2014), 358-366.
  36. H. Sun, S. Liu, G. Zhou, H. M. Ang, M. O. Tadé, S. Wang, Reduced graphene oxide for catalytic oxidation of aqueous organic pollutants, ACS Appl. Mater. Interfac. 4 (2012), 5466-5471.
  37. H. A. E. A. Rahdar, H. Arabi, Preparation of super paramagnetic iron oxide nanoparticles and investigation their magnetic properties. (2016).
  38. T. Harifi, M. Montazer, A novel magnetic reusable nanocomposite with enhanced photocatalytic activities for dye degradation. Sep. Purif. Technol. 134 (2014), 210-219.
  39. J. J. Pignatello, Dark and photoassisted iron (3+)-catalyzed degradation of chlorophenoxy herbicides by hydrogen peroxide. Environ. Sci. Technol. 26 (1992), 944-951.
  40. C. Badellino, C. A. Rodrigues, R. Bertazzoli, Oxidation of pesticides by in situ electrogenerated hydrogen peroxide: Study for the degradation of 2, 4-dichlorophenoxyacetic acid. J. Hazard. Mater. 137 (2006), 856-864.
  41. F. E. F. Rêgo, A. M. S. Solano, I. C. da Costa Soares, D. R. da Silva, C.A.M. Huitle, M. Panizza, Application of electro-Fenton process as alternative for degradation of Novacron Blue dye. J. Environ Chem. Eng. 2 (2014) ,875-880.
  42. X. Yu, M. Zhou, G. Ren, L. Ma, A novel dual gas diffusion electrodes system for efficient hydrogen peroxide generation used in electro-Fenton. Chem. Eng. J. 263 (2015), 92-100.
  43. H. Lin, H. Zhang, X. Wang, L. Wang, J. Wu, Electro-Fenton removal of Orange II in a divided cell: reaction mechanism, degradation pathway and toxicity evolution. Sep. Purif. Technol. 122 (2014), 533-540.
  44. C. T. Wang, W. L. Chou, M. H. Chung, Y. M. Kuo, COD removal from real dyeing wastewater by electro-Fenton technology using an activated carbon fiber cathode, Desalination. 253 (2010), 129-134.
  45. Y. Liu, L. Liu, J. Shan, J. Zhang, Electrodeposition of palladium and reduced graphene oxide nanocomposites on foam-nickel electrode for electrocatalytic hydrodechlorination of 4-chlorophenol. J. Hazard. Mater. 290 (2015), 1-8.
  46. X. Lin, Y. Ni, S. Kokot, A novel electrochemical sensor for the analysis of β-agonists: the poly (acid chrome blue K)/graphene oxide-nafion/glassy carbon electrode. J. Hazard. Mater. 260 (2013), 508-517