هیدروژل‌های نانوچندسازه برپایه ژلاتین و نانوذرات اکسید نیکل برای جذب آلاینده‌های کاتیونی

نوع مقاله : مقاله پژوهشی

نویسندگان

گروه شیمی، دانشکده علوم ‌پایه، دانشگاه بین‌المللی امام خمینی(ره)، قزوین، ایران

چکیده

در این مطالعه، هیدروژل‌های نانوچند‌سازه‌ بر پایه ژلاتین و نانوذرات اکسید نیکل با استفاده از تک‌پارهای آکریل‌آمید (AAm) و 2-آکریل‌آمیدو-2-متیل‌پروپان‌سولفونیک‌اسید (AMPS) از طریق پلیمری‌شدن رادیکالی با استفاده از ‌پرسولفات آمونیم به عنوان آغازگر و متیلن‌بیس‌آکریل‌آمید به عنوان شبکه‌ساز، تهیه شدند. ساختار هیدروژل‌های نانوچند‌سازه به وسیله طیف‌سنجی زیر قرمز (FT-IR)، تجزیه وزن‌سنجی حرارتی (TGA)، میکروسکوپ الکترونی روبشی (SEM) و میکروسکوپ الکترونی (TEM) شناسایی شد. جذب ماده رنگزای بنفش بلوری به عنوان نمونه‌ای از مواد رنگزای کاتیونی با تغییر عوامل مختلف مانند زمان تماس، دما، pH و غلظت اولیه ماده رنگزا بررسی شد. در شرایط بهینه، بیشترین مقدار جذب ماده رنگزا از محلول‌های آبی در غلظت‌های پایین (ppm10) حدود 97.5 درصد و در غلظت‌های بالا (ppm700) حدود 99.5 درصد به دست آمد. نتایج به‌دست‌آمده از این تحقیق نشان داد که این هیدروژل‌ها می‌توانند به عنوان جاذب‌هایی کارآمد برای حذف مواد رنگزای کاتیونی از محلول‌های آبی به کار روند. همچنین فرآیند جذب ماده رنگزا از الگوی جذب لانگمویر و سینتیک شبه مرتبه دوم پیروی می‌کند.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Nanocomposite Hydrogels Based on Gelatin and Nickel Oxide Nanoparticles for Adsorption of Cationic Pollutants

نویسندگان [English]

  • H. Ghasemzadeh Mohammadi
  • A. Keshtkar Vanashi
  • M. Taghipour Ziaratgah
  • M. Pirgholi
Department of Chemistry, Faculty of Basic Science, Imam Khomeini International University, Qazvin, Iran
چکیده [English]

In this study, a nanocomposite hydrogel was synthesized based on gelatin and nickel oxide nanoparticles using acrylamide (AAm) and 2-Acrylamido-2-methylpropane sulfonic acid (AMPS) by radical polymerization method. The reaction was performed in the presence of ammonium presulfate as an initiator and methylene bis acrylamide as a crosslinker. The structure of nanocomposite hydrogels were characterized by Fourier transform infrared spectroscopy (FT-IR), thermal gravimetric analysis (TGA), scanning electron microscopy (SEM), and transmission electron microscopy (TEM). Crystal violet was selected as a template for cationic dyes. The adsorption was optimized by changing various parameters such as contact time, temperature, pH, and initial concentration of dye. In optimal conditions, the maximum amount of dye adsorption from aqueous solutions at low concentrations (10 ppm) was approximately 97.5%, and at high concentrations (700 ppm) was about 99.5%. The results of this study showed that the hydrogels can be applied as efficient absorbent for the removal of cationic dyes from aqueous solutions. The adsorption process follows Langmuir isotherm model and pseudo second order kinetic. 

کلیدواژه‌ها [English]

  • Acrylamide
  • Nanocomposite hydrogels
  • Gelatin
  • Crystal violet
  • Dye adsorption
  1. O. Duman, E. Ayranci, Adsorption characteristics of benzaldehyde, sulphanilic acid, and p-phenolsulfonate from water, acid, or base solutions onto activated carbon cloth. Sep. Sci. Technol. 41 (2006), 3673–3692.
  2. O. Duman, E. Ayranci, Adsorptive removal of cationic surfactants from aqueous solutions onto high-area activated carbon cloth monitored by in situ UV spectroscopy. J. Hazard. Mater. 174 (2010), 359–367.
  3. O. Duman, E. Ayranci, Attachment of benzo-crown ethers onto activated carbon cloth to enhance the removal of chromium, cobalt and nickel ions from aqueous solutions by adsorption. J. Hazard. Mater. 176 (2010), 231–238.
  4. E. Ayranci, O. Duman, In-situ UV-visible spectroscopic study on the adsorption of some dyes onto activated carbon cloth. Sep. Sci. Technol. 44 (2009), 3735–3752.
  5. S. Tunç, O. Duman, T. Gürkan, Monitoring the decolorization of Acid Orange 8 and Acid Red 44 from aqueous solution using Fenton’s reagents by online spectrophotometric method: effect of operation parameters and kinetic study. Ind. Eng. Chem. Res. 52 (2013), 1414–1425.
  6. A. Zehhaf, A. Benyoucef, C. Quijada, S. Taleb, E. Morallón, Algerian natural montmorillonites for arsenic(III) removal in aqueous solution. Int. J. Environ. Sci. Technol. 12 (2015), 595–602.
  7. H. Hosseinzadeh, N. Khoshnood, Removal of cationic dyes by poly(AA- co -AMPS)/montmorillonite nanocomposite hydrogel. Desalin. Water Treat. 57 (2016), 6372–6383.
  8. X. Qi, L. Wu, T. Su, J. Zhang, W. Dong, Polysaccharide-based cationic hydrogels for dye adsorption. Colloids Surf. B. 170 (2018), 364–372.
  9. A. Seidmohammadi, G. Asgari, A. Dargahi, M. Leili, Y. Vaziri, B. Hayati, A. A. Shekarchi, A. Mobarakian, A. Bagheri, S. B. Nazari Khanghah, A. Keshavarzpour, A comparative study for the removal of Methylene blue dye from aqueous solution by novel activated carbon based adsorbents. Prog. Color. Color. Coatings. 12 (2019), 133–144.
  10. S. Sadighian, M. Abbasi, S.A. Arjmandi, H. Karami, Dye removal from water by zinc ferrite-graphene oxide nanocomposite. Prog. Color. Color. Coatings. 11 (2018), 85–92.
  11. A. Hamidi, K. Seifpanahi-Shabani, M. Karamoozian, Basic dyes removal by natural salvadora persica adsorbent. Prog. Color. Color. Coatings. 10 (2017), 115–128.
  12. M. Madadi, F. Tadayon, M.E. Olya, Synthesis, characterization and application of silica aerogel-eggshell nanocomposite for the dye removal from colored wastewater. Prog. Color. Color. Coatings. 9 (2016), 1–16.
  13. ر. تبارکی، ن. صادقی نژاد، هایده. پورعجم، مطالعه حذف مواد رنگزا از مخلوط دوتایی توسط پوست سبز فندق به عنوان پسماند کشاورزی با روش سطح پاسخ، نشریه علمی علوم و فناوری رنگ، (1399) 1، 23-13.
  14. F. Ullah, M.B.H. Othman, F. Javed, Z. Ahmad, H.M. Akil, Classification, processing and application of hydrogels: A review. Mater. Sci. Eng. C. 57 (2015), 414–433.
  15. M. Dargahi, H. Ghasemzadeh, A. Torkaman, CdS quantum dot nanocomposite hydrogels based on κ-carrageenan and poly (acrylic acid), photocatalytic activity and dye adsorption behavior. Polym. Bull. 76 (2019), 5039–5058.
  16. X. Qi, L. Wu, T. Su, J. Zhang, W. Dong, Polysaccharide-based cationic hydrogels for dye adsorption. Colloids Surf. B. 170 (2018), 364–372.
  17. V. Sinha, S. Chakma, Advances in the preparation of hydrogel for wastewater treatment: A concise review. J. Environ. Chem. Eng. 7 (2019), 103295.
  18. H. Huang, L. Hou, F. Zhu, J. Li, M. Xu, Controllable thermal and pH responsive behavior of PEG based hydrogels and applications for dye adsorption and release. RSC Adv. 8 (2018), 9334–9343.
  19. C.-Y. Tang, P. Yu, L.-S. Tang, Q.-Y. Wang, R.-Y. Bao, Z.-Y. Liu, M.-B. Yang, W. Yang, Tannic acid functionalized graphene hydrogel for organic dye adsorption. Ecotoxicol. Environ. Saf. 165 (2018), 299–306.
  20. Y. Zhang, L. Liang, Y. Chen, X.-M. Chen, Y. Liu, Construction and efficient dye adsorption of supramolecular hydrogels by cyclodextrin pseudorotaxane and clay. Soft Matter. 15 (2019), 73–77.
  21. J. R. Soucy, E. Shirzaei Sani, R. Portillo Lara, D. Diaz, F. Dias, A.S. Weiss, A.N. Koppes, R.A. Koppes, N. Annabi, Photocrosslinkable Gelatin/Tropoelastin hydrogel adhesives for peripheral nerve repair. Tissue Eng. Part A. 24 (2018), 1393–1405.
  22. O. Ozay, N. Aktas, E. Inger, N. Sahiner, Hydrogel assisted nickel nanoparticle synthesis and their use in hydrogen production from sodium boron hydride. Int. J. Hydrogen Energy. 36 (2011), 1998–2006.
  23. Y. N. Patel, M. P. Patel, Adsorption of azo dyes from water by new poly (3-acrylamidopropyl)-trimethylammonium chloride-co-N,N-dimethylacrylamide superabsorbent hydrogel—Equilibrium and kinetic studies. J. Environ. Chem. Eng. 1 (2013), 1368–1374.
  24. I. Langmuir, The adsorption of gases on plane surfaces of glass, mica and platinum. J. Am. Chem. Soc. 40 (1918), 1361–1403.
  25. ز. کریمی، ع. اله وردی، ف. اوشنی، بررسی حذف مواد رنگزا از پساب با استفاده از نانوجاذب‌های کامپوزیت آلومینا. مجله مطالعات در دنیای رنگ. (1399)2، 59-41.
  26. H. Freundlich, W. Heller, The adsorption of cis-and trans-azobenzene. J. Am. Chem. Soc. 61 (1939), 2228–2230.
  27. H. Mittal, A. Maity, S. Sinha Ray, The adsorption of pb 2+ and cu 2+ onto gum ghatti-grafted poly(acrylamide- co -acrylonitrile) biodegradable hydrogel: Isotherms and Kinetic Models. J. Phys. Chem. B. 119 (2015), 2026–2039.
  28. P. Ilgin, H. Ozay, O. Ozay, Selective adsorption of cationic dyes from colored noxious effluent using a novel N-tert-butylmaleamic acid based hydrogels. React. Funct. Polym. 142 (2019), 189–198.
  29. Q. Peng, M. Liu, J. Zheng, C. Zhou, Adsorption of dyes in aqueous solutions by chitosan–halloysite nanotubes composite hydrogel beads. Microporous Mesoporous Mater. 201 (2015), 190–201.
  30. M. Dargahi, H. Ghasemzadeh, A. Bakhtiary, Highly efficient absorption of cationic dyes by nano composite hydrogels based on κ-carrageenan and nano silver chloride. Carbohydr. Polym. 181 (2018), 587–595.
  31. G. R. Mahdavinia, A. Massoudi, A. Baghban, E. Shokri, Study of adsorption of cationic dye on magnetic kappa-carrageenan/PVA nanocomposite hydrogels. J. Environ. Chem. Eng. 2 (2014), 1578–1587.
  32. S. Zhao, F. Zhou, L. Li, M. Cao, D. Zuo, H. Liu, Removal of anionic dyes from aqueous solutions by adsorption of chitosan-based semi-IPN hydrogel composites. Compos. Part B Eng. 43 (2012), 1570–1578.
  33. I. Ali, C. Peng, T. Ye, I. Naz, Sorption of cationic malachite green dye on phytogenic magnetic nanoparticles functionalized by 3-marcaptopropanic acid. RSC Adv.  (2018), 8878–8897.
  34. G. R. Mahdavinia, A. Baghban, S. Zorofi, A. Massoudi, Kappa-carrageenan biopolymer-based nanocomposite hydrogel and adsorption of methylene blue cationic dye from water. J. Mater Env. Sci. 5 (2014), 330–337.
  35. X.-S. Hu, R. Liang, G. Sun, Super-adsorbent hydrogel for removal of methylene blue dye from aqueous solution. J. Mater. Chem. A. 6 (2018), 17612–17624.
  36. S. Sethi, B. S. Kaith, M. Kaur, N. Sharma, S. Khullar, A hydrogel based on dialdehyde carboxymethyl cellulose–gelatin and its utilization as a bio adsorbent. J. Chem. Sci. 132 (2020), 1–16.
  37. X. Jv, X. Zhao, H. Ge, J. Sun, H. Li, Q. Wang, H. Lu, Fabrication of a magnetic poly (aspartic acid)-Poly (acrylic acid) hydrogel: Application for the adsorptive removal of organic dyes from aqueous solution. J. Chem. Eng. Data. 64 (2019), 1228–1236.