نویسندگان
1 گروه شیمی، دانشکده علوم پایه، دانشگاه گیلان
2 مهندسی محیط زیست، پژوهشکده محیط زیست جهاد دانشگاهی
چکیده
کلیدواژهها
عنوان مقاله [English]
نویسندگان [English]
In this research, CuO nano-particles composite with sawdust as a cellulose bed (termed as CuO/SD NC) were prepared via chemical precipitation and then were used for removal of Congo red dye as a typical anionic dye (termed as CR) from aqueous solutions. Surface characterisation of the nanomaterial adsorbents was carried out by X-ray Diffraction (XRD) and scaning electron microscopy (SEM) techniques. Adsorption studies were conducted by CuO/SD nanocomposite in a fixed-bed column system. In order to find out removal optimisation conditions in column adsorption experiments, the effects of several parameters, such as pH, initial dye concentration, flow rate, and bed depth on the sorption of Congo red dye were studied. When the feedstock pH reduction, the volume of breakthrough curves increased and Congo red dye natural pH value equal 5 was chosen as the optimal pH. By reducing the solution dye flow rate and increasing adsorbent bed height, due to increased contact time and adsorbent surface available, the breakthrough curves volume increased and higher absorption capacity occurs. Varios kinetic models such as Thomas, Adams-Bohart and BDST kinetic model were applied in order to obtain colum adsorption performance. Thomas model shows good agreement in the column design that indicates the process follows the Langmuir adsorption kinetics, adsorption process was one layer and the maximum absorption capacity of the absorbent was obtained 28.4 mg/g. At the end in order to find out the possible frequent use of adsorbent in column system, desorption and regeneration investigation was also studied.
کلیدواژهها [English]