حذف ماده رنگزای کاتیونی بازیک بنفش16 (BV16) از محلول‌های آبی با استفاده از دندریمر پلی‌آمیدوآمین نسل 2 (PAMAM-G2)



نشریه: سال يازدهم - شماره سوم- پاييز 1396 - مقاله 3   صفحات :  173 تا 185



کد مقاله:
JCST-20-08-2016-1674

مولفین:
خدیجه دیده بان: دانشگاه پیام نور - گروه شیمی
سید احمد میرشکرایی: دانشگاه پیام نور - گروه شیمی
غلامرضا رجبی: دانشگاه پیام نور - گروه شیمی
جعفر عظیم وند: دانشگاه پیام نور - گره شیمی


چکیده مقاله:

در این مطالعه دندریمر پلی‌آمیدوآمین نسل 2 (PAMAM-G2) به عنوان جاذب برای رنگبری پساب حاوی ماده رنگزای بازیک بنفش 16 ((BV16 استفاده شد. به منظور مطالعه ویژگی‌های رنگبری جاذب، عوامل موثر بر فرآیند رنگبری همچون pH، مقدار جاذب، غلظت ماده رنگزا و زمان تماس بررسی گردید. با افزایش pH ، زمان تماس و غلظت اولیه ماده رنگزا، ظرفیت جذب qe نیز افزایش یافت. در حالی که مقدار جاذب، با ظرفیت جذب رابطه معکوس داشت که می‌توان آن را به کاهش رقابت در میان مولکول‌های ماده رنگزا برای اتصال به جاذب نسبت داد. شرایط بهینه برای جذب ماده رنگزا در pH برابر 11.8، مقدار جاذب gr.l-1 0.6، غلظت ماده رنگزای mg.l-1 40 و زمان تماس min 100 تعیین شد. از میان عوامل بررسی شده، pH بیشترین تاثیر را در ظرفیت جذب و درصد حذف ماده رنگزا فراهم نمود. به گونه‌ای که با تغییر pH از 8 به 11.8 درصد حذف ماده رنگزا از mg.g-168 به mg.g-1 102 افزایش یافت. ایزوترم حالت تعادل با مدل‌های ایزوترمی لانگمویر، فروندلیچ و تمکین مطابقت داده شد. نتایج تطابق خوبی با مدل ایزوترمی لانگمویر با ضریب هم‌بستگی 0.994 نشان داده و بیشترین ظرفیت جذب در شرایط بهیه mg.g-1 114.38 ارزیابی گردید. برای بررسی سینتیک جذب سطحی داده‌ها، از سه مدل شبه درجه اول، شبه درجه دوم و نفوذ درون‌ذره‌ای استفاده شد. سینتیک جذب سطحی در فرآیند جذب از مدل‌های شبه درجه دوم و نفوذ درون‌ذره‌ای تبعیت نمود که با مقدار تجربی آن بسیار نزدیک بوده و نشان دهنده توانایی کنترل فرآیند جذب به وسیله عامل شیمیایی غلظت و نفوذ درون ذره‌ای است. نتایج نشان‌دهنده بازده و ظرفیت جذب مناسب در حذف ماده رنگزای BV16 به وسیله دندریمر PAMAM-G2 می‌باشد.


Article's English abstract:

In this study, poly(amidoamine) G-2 dendrimer (PAMAM-G2) were applied as adsorbents for the removal of the dye from the effluent containing dye basic violet 16 (BV16). With increasing pH, contact time and initial dye concentration, increased absorption capacity qe., While the amount of adsorbent, the adsorption capacity was inversely. Which can be attributed to reduced competition among dye molecules to bind to the sorbent. The optimum conditions for dye absorption was determined at pH 11.8, the amount of absorbent 0.6 gr.L-1, dye concentration 40 mg.l-1 and contact time 100 min. Among the factors studied, pH has provided the greatest impact on the absorption capacity and the percentage of dye removal. So that by changing the pH from 8 to 11.8, increased the percentage of dye removal from 68 mg.gr-1 to 102 mg.gr-1. Isotherm equilibrium was consistent with Langmuir isotherm models, Freundlich and Temkin. The results show good agreement with Langmuir isotherm model with a correlation coefficient 0.994 and the maximum absorption capacity was evaluated at optimal conditions mg.g-1 114.38. For adsorption kinetics data, was used three models Pseudo-first-order, pseudo-second-order and influence between the particles. The sorption kinetics in the absorption process followed the pseudo-second-order and intraparticle diffusion models. That is very close to the experimental value, and represents the ability to control the absorption process by chemical agent concentration and intraparticle diffusion. The results indicate the proper efficiency and absorption capacity in removal of BV16 by the PAMAM-G2 dendrimer.


کلید واژگان:
رنگبری، دندریمر پلی آمیدوآمین نسل 2، بازیک بنفش 16، ایزوترم جذب، سینتیک جذب.

English Keywords:
Dye removal, Poly(amidoamine)G-2 dendrimer, Basic violet 16, Adsorption isotherm, Adsorption kinetic.

منابع:

English References:
1. M. Ben Manaa, B. Schmaltz, M. Bouaicha, V. François Tran, A. Ben Lamine, Modeling of adsorption isotherms of dye N719 on titanium oxide using the grand canonical ensemble in statistical physics for dye sensitized solar cells. Solar Energy. 135(2016), 177-187. 2. V. M. Daskalaki, Timotheatou ES, Katsaounis A, Kalderis D. Degradation of Reactive Red 120 using hydrogen peroxide in subcritical water. Desalination. 274(2011), 200-205. 3. S. Merouani, O. Hamdaoui, F. Saoudi, M. Chiha. Sonochemical degradation of Rhodamine B inaqueous phase: Effects of additives. Chem. Eng. J. 158(2010), 550-557. 4. M. Y. Arica, G. Bayramoglu. Biosorption of Reactive Red -120 dye from aqueous solution by native and modified fungus biomass preparations of Lentinus sajor-caju. J. Hazard. Mater. 149(2007), 499-507. 5. L. Qingwen, G. Mengfan, Ch. Jiali, M. Hongzhu, Adsorption properties of crosslinking carboxymethyl cellulose grafting dimethyldiallylammonium chloride for cationic and anionic dyes. Carbohydr. Polym. 151(2016), 283-294. 6. A. Celekli, M. Yavuzatmaca, H. Bozkurt. Kinetic and equilibrium studies on the adsorption of reactive red 120 from aqueous solution on Spirogyra majuscula. Chem. Eng. J. 152(2009), 139-145. 7. V. Nair, R. Vinu, Peroxide-assisted microwave activation of pyrolysis char for adsorption of dyes from wastewater, Bioresour. Technol. 216(2016), 511-519. 8. L. Liu, J. Zhang, R. Ch. Tang, Adsorption and functional properties of natural lac dye on chitosan fiber. React. Funct. Polym. 73(2013), 1559-1566 9. A. Mohammadi, A. Aliakbarzadeh Karimi, H. Fallah Moafi, Adsorption and photocatalytic properties of surface-modified TiO2 nanoparticles for Methyl Orange removal from aqueous Solutions. Prog. Color Colorants Coat. 4(2015), 248-258. 10. S. Abedini khorrami, M. E. Olya, F. Motiee, N. Khorshidi, Synthesis of CuO-ZnO nanocomposite and its photocatalytic activity. Prog. Color, Colorants Coat. 9(2016), 207-215. 11. N. M. Mahmoodi, S. Soltani-Gordefaramarzi, Dye removal from single and quaternary systems using surface modified nanoparticle: isotherm and kinetics. Prog. Color, Colorants Coat. 9(2016), 85-97 12. A. Ziapour, M. Sefidrooh, M. Moadeli, Adsorption of remazol Black B Dye from aqueous solution using bagasse. Prog. Color, Colorants Coat. 9(2016), 99-108 13. M. Khajeh mehrizi, A. Mahmudi, Decoloration of Disperse blue 56 by using of UV/H2O2/MWCNT’s. Prog. Color, Colorants Coat. 8(2015), 123-133. 14. E. Radaei, M. Alavi moghaddam, M. Arami, Adsorption of reactive Blue 19 onto activated carbon prepared from pomegranate residual by phosphoric acid activation: Kinetic, Isotherm and Thermodynamic studies. Prog. Color, Colorants Coat. 7(2014), 245-257 15. A. Salem, M. Saghapour, Effect of activation factors on adsorption of cationic dye, methylene blue, by activated bentonite. Prog. Color Colorants Coat. 6(2013), 97-107 16. W. Xinbo, W. Dingcai, F. Ruowen, Z. Wei, Preparation of carbon aerogels with different pore structures and their fixed bed adsorption properties for dye removal. Dyes Pigm. 95(2012), 689-694. 17. A.A. Zolriasatein, M. E. Yazdanshenas, R. Khajavi, A. Rashidi, The application of poly(amidoamine) dendrimers for modification of jute yarns: Preparation and dyeing properties. J. Saudi Chem. Soc. 19 (2015), 155–162. 18. N. Yuzhong, Q. Rongjun, S. Changmei, W. Chunhua, Ch. Hou, J. Chunnuan, Z. Ying, Sh. Xia, B. Fanling, Adsorption of Pb(II) from aqueous solution by silica-gel supported hyperbranched polyamidoamine dendrimers. J. Hazard. Mater. 244(2013), 276-286. 19. Q. Xiaole, F. Yuchao, H. Huan, W. Zhenghong, Hyaluronic acid-grafted polyamidoamine dendrimers enable long circulation and active tumor targeting simultaneously. Carbohydr. Polym. 126(2015), 231-239. 20. P.F. Méndez, S. Sepulveda, J. Manr?quez, F.J. Rodr?guez, E. Bustos, A. Rodr?guez, Luis A.Godinez, Growth dynamics of polyamidoamine dendrimer encapsulated CdS nanoparticles. J. Cryst. Growth. 361(2012), 108-113. 21. J. P. Eun, Ch. Hoon, W.K. Si, H.N. Dong, Chromatographic methods for characterization of poly(ethylene glycol)-modified polyamidoamine dendrimers. Anal. Biochem. 449(2014), 42-44. 22. T.N. Feliu, V. W. Marie, I.M. Maria, A. Kunzmann, A. Hult, A. Nystr?m, M. Malkoch, B. Fadeel, Biocompatibility of polyester dendrimers in comparison to polyamidoamine dendrimers. Toxicol. Lett. 211(2012), 203-204. 23. M. Dodangeh, K. Gharanjig, M. Arami, S.Atashrouz, Surface alteration of polyamide fibers by polyamidoamine dendrimers and optimization of treatment process using neural network towards improving their dyeing properties. Dyes Pigm. 111(2014), 30-38. 24. Y. Zhang, M. Y. Xu, T.K. Jiang, W.Z. Huang, J.Y. Wu, Low generational polyamidoamine dendrimers to enhance the solubility of folic acid: A “dendritic effect” investigation. Chin. Chem. Lett. 25(2014), 815-818. 25. G. Ying, G. Yujun, Q. Weidong, Polyamidoamine dendrimers as sweeping agent and stationary phase for rapid and sensitive open-tubular capillary electrophoretic determination of heavy metal ions. Talanta. 121(2014), 50-55. 26. B. A. Fil1, M. T. Yilmaz, S. Bayar1, M. T. Elkoca, Investigation of adsorption of the dyestrazon red violet 3rn (basic violet 16) on montmorilonite clay. Brazilian J. Chem. Eng. 31(2014), 171-182. 27. J-M. Fanchiang, D-H. Tseng, Degradation of anthraquinone dye C.I, reactive Blue 19 in aqueous solution by ozonation. Chemosphere. 77(2009), 214-221. 28. T. Madrakian, A. Afkhami, M. Ahmadi, Adsorption and kinetic studies of seven different organic dyes onto magnetite nanoparticlesloaded tea waste and removal of them from wastewater samples. Spectroch. Acta Part A. 99(2012), 102-109. 29. A. K. Kushwaha, N. Gupta, ChattopadhyayaMC, Removal of cationic methylen e blue and malachite green dyes from aqueous solution by waste materia ls of Daucus carota. J. Saudi Chem. Soc. 1(2011), 15-26. 30. F. A. Pavan, A.C. Mazzocato, Y. Gushikem, Removal of methylene blue dye from aqueous solutions by adsorption using yellow passion fruit peel as adsorbent. Bioresour. Technol. 99(2008), 3162-3165. 31. R. Gong, M. Li, C. Yang, Y. Sun, J. Chen, Removal of cationic dyes from aqueous solution by adsorption on peanut hull. J. Hazard. Mater. 121(2005), 247-250. 32. M. H EZ-H, N A, Fast and efficient removal of reactive Black 5 from aqueous solution by a combined method of ultrasound and sorption process. Ultrason. Sonochem. 15(2007), 433-437. 33. S. D. Khattri, M.K. Singh, Removal of malachite green from dye wastewater using neem sawdust by adsorption. J. Hazard. Mater. 167(2009), 1089-1094. 34. N. Caner, I. Kiran, S. Ilhan, C.F. Iscen, Isotherm and kinetic studies of Burazol Blue ED dye biosorption by dried anaerobic sludge. J. Hazard. Mater. 165(2009), 279-284. 35. M. S. Mahmoud, J.Y. Farah, T.E. Farrag, Enhanced removal of Methylene Blue by electrocoag ulation using iron electrodes. Egyptian J. Pet. 22(2013), 211-216. 36. A. Gil, F.C.C. Assis, S.Albeniz, S.A. Korili, Removal of dyes from wastewaters by adsorption on pillared clays. Chem. Eng. J. 168(2011), 1032-1040. 37. M. Siddique, R. Farooq, A. Khalid, A. Farooq, Q. Mahmood, U. Farooq, et al, Thermal-pressure-mediated hydrolysis of Reactive Blue 19 dye. J. Hazard. Mater. 172(2009), 1007-1012. 38. R?o AId, Fern?ndez J, Molina J, Bonastre J, Cases F, Electrochemical treatment of a synthetic wastewater containing a sulphonated azo dye, Determination of naphthalenesulphonic compounds produced as main by-products. Desalination. 273(2011), 428-435. 39. G. Vijayakumar, R. Tamilarasan, M. Dharmendirakumar, Adsorption, Kinetic, Equilibrium and Thermodynamic studies on the removal of basic dye Rhodamine-B from aqueous solut ion by the use of natural adsorbent perlite. J. Mater. Environ. Sci. 3(2012), 157-170. 40. W. Lijuan, L. I. Jian, Removal of methylene blue from aqueous solution by adsorption onto crofton weed stalk. Bioresou. 8(2013), 2521-2536. 41. N. A. OLADOJA, Studies on the sorption of basic dye by rubber (Hevea brasiliensis) seed shel. Turkish J. Eng. Env. Sci. 32(2008), 143-152. 42. A. Basker, P. S. Syed Shabudeen, P. Vignesh Kumarand A. P.Shekhar, Sequestration of Basic dye from textile industry waste water using agro-wastes and modeling with anova, Rasayan. J.Chem. 7(2014), 64-74. 43. H. Ghasemzadeh, S, Shidran, Methyl Violet dye absorption from aqueous solutions by nanomagnetic hydrogels based on ?-carrageenan and acrylic acid, Iran. J. Polym. Sci. Technol. 29(2016), 365-376. 44. M. Pishgar, M. Esmaeil Yazdanshenas, M. H. Ghorbani, Removal of basic blue 159 from aqueous solution using banana peel as a low-cost adsorbent. J. Appl. Chem. Res. 7(2013), 51-62. 45. R. ShirsathS, P. PatilA, A. BhanvaseB, H. SonawaneS, Ultrasonically prepared poly(acrylamide)-kaolin composite hydrogel for removal of crystal violet dye from wastewater. J. Environ. Chem. Eng. 629(2015), 1-11.



فایل مقاله
تعداد بازدید: 2000
تعداد دریافت فایل مقاله : 21

ورود به سامانه نشریه
شناسنامه ی نشریه
صاحب امتياز:
موسسه پژوهشي
علوم و فناوري رنگ و پوشش
مدير مسوول:
پروفسور زهرا رنجبر
سردبير:
پروفسور زهرا رنجبر
مدير اجرايي:
دکتر فرهاد عامري
شاپا چاپي:
8779 - 1735
شاپا الکترونيکي:
2169 - 2383
دسترسی سریع
آخرین شماره های نشریه
آمارهای وبگاه
تعداد بازدید:2,001

کاربران حاضر:95