تهیه جاذب فیلمی نوین بر پایه کربن فعال مغناطیسی/آلژینات و ارزیابی کارایی آن در حذف رنگزای کریستال ویولت از آب

نوع مقاله : مقاله پژوهشی

نویسندگان

دانشکده مهندسی شیمی و نفت، دانشگاه تبریز، تبریز، ایران، صندوق‌پستی: 51666-16471

چکیده

این مطالعه با هدف سنتز یک جاذب جدید و ارزان‌قیمت به شکل فیلم از منبع طبیعی و در دسترس هسته سنجد، با روش تهیه آسان، و همچنین بازدهی بالاتر از 90 درصد در جذب رنگزای کریستال ویولت انجام شده است. با بررسی تأثیر عوامل مختلف از قبیل pH، مقدار جاذب، دما، زمان تماس و غلظت اولیه رنگزا، شرایط بهینه بیشینه جذب مشخص گردید. نتایج نشان دادند بیشینه بازده جذب 94.24 درصد بوده و در شرایط بهینه شامل 8 = pH، مقدار جاذب g/l1، دمای ºC 25، زمان تماس min 90 و غلظت اولیه رنگزا mg/l 10 به دست می­آید. با بررسی مدل­های ایزوترمی و سینتیکی مشخص شد که جذب به صورت فیزیکی و مطلوب بوده و داده­های تعادلی با مدل ایزوترم لانگمویر و مدل سینتیکی شبه مرتبه دوم برازش بیشتری دارند. بیشینه ظرفیت جذب جاذب فیلمی
mg/g 30.30 محاسبه شد. بررسی ترمودینامیکی نشان داد که جذب به صورت خودبه‌خودی و گرمازا اتفاق می­افتد. مطالعات واجذبی نیز بیان کرد که بعد از چندین مرحله دفع متوالی، همچنان ظرفیت جذب جاذب مطلوب است.

کلیدواژه‌ها


عنوان مقاله [English]

Preparation of a New Adsorbent Film Based on Magnetic Activated Carbon/ Alginate and Evaluation of its Efficiency in Crystal Violet Removal from Water

نویسندگان [English]

  • M. Chaharkam
  • M. Tahmasebpoor
Faculty of Chemical & Petroleum Engineering, University of Tabriz, P.O. Box: 51666-16471, Tabriz, Iran.
چکیده [English]

This study aims to synthesize a novel low-cost adsorbent in the form of film prepared by natural and available sources of elderberry kernel, with an easy preparation method and an efficiency higher than 90% in the adsorption of crystal violet dye. By investigating the effects of various parameters, including pH, adsorbent dose, temperature, contact time and dye initial concentration, the optimum conditions to reach the maximum adsorption were determined. Results showed that the maximum adsorption efficiency is 94.24 %, which is obtained under optimal conditions of
pH = 8, adsorbent dose 1 g/l, temperature 25 °C, contact time 90 min and dye initial concentration 10 mg/l. Isotherm and kinetic models reveal that the adsorption is physical and favourable, and equilibrium data are more compatible with Langmuir isotherm and pseudo-second-order kinetic models. The maximum adsorption capacity of adsorbent was calculated to be 30.30 mg/g. Thermodynamic investigation showed that the adsorption is spontaneous and exothermically. Desorption studies also stated that after several consecutive removal steps, the adsorption capacity is still favourable.

کلیدواژه‌ها [English]

  • Adsorbent film
  • Activated carbon
  • Alginate
  • Adsorption
  • Crystal violet
  1. Amina A, Khodja HD, Zaghouane-Boudiaf H. Textile dyes removal from wastewater using recent promising composites: A review. Algerian J. Chem. Eng. 2021;1(2):49-65. http://doi.org/10.5281/ zenodo.5451775.
  2. Samsami S, Mohamadizaniani M, Sarrafzadeh MH, Rene ER, Firoozbahr M. Recent advances in the treatment of dye-containing wastewater from textile industries: Overview and perspectives. Process Saf. Environ. Prot. 2020;143:138-63. https://doi.org/10.1016/. j.psep.2020.05.034.
  3. Quesada H, Araújo T, Vareschini D, Barros MA, Gomes R, Bergamasco R. Chitosan, alginate and other macromolecules as activated carbon immobilizing agents: A review on composite adsorbents for the removal of water contaminants. Int. J. Biol. Macromol. 2020;164: 2535-2549. https://doi.org/10.1016/j.ijbiomac.2020.08.118.
  4. AL-Shehri HS, Almudaifer E, Alorabi AQ, Alanazi HS, Alkorbi AS, Alharthi FA. Effective adsorption of crystal violet from aqueous solutions with effective adsorbent: equilibrium, mechanism studies and modeling analysis. Environ. Pollut. Bioavailab.2021;33(1):214-26. https://doi. org/10 .1080/26395940.2021.1960199.
  5. Saha SN, K A. Kinetic and Equilibrium Studies of Biosorption of Methylene Blue and Crystal Violet Using Leaf Biomass as Adsorbent.Chem. Eng. Sci. 2022;7(1):1-6. https://doi.org/10.12691/ces-7-1-1.
  6. Mahamadi C, Mawere E. Continuous flow biosorptive removal of methylene blue and crystal violet dyes using alginate–water hyacinth beads. Cogent Environ. Sci. 2019;5(1):1594513. https://doi.org/ 10.1080/23311843.2019.1594513.
  7. Benhachem FZ, Attar T, Bouabdallah F. Kinetic study of adsorption methylene blue dye from aqueous solutions using activated carbon. Chem. Rev. Lett. 2019;2(1):33-9. https://doi. org/ 10.22034 /CRL. 2019. 87964.
  8. Noori M, Tahmasebpoor M, Hosseini Nami S. Adsorption removal of crystal violet in single and binary systems onto low-cost iron oxide nanoparticles coated clinoptilolite powders/granules. Life Sci. 2022. https://doi.org/10.21203/rs.3.rs-1727993/v1.
  9. Prasad R, Yadav KD. Optimisation of Crystal Violet and Methylene Blue Dye Removal from Aqueous Solution onto Water Hyacinth using RSM. Pollution. 2021;7(4):799-814. https://doi.org / 10.22059/POLL.2021.322778.1072.
  10. MJ Alshamri A, M Aljeboree A, B Alqaragully M, F Alkaim A. Removal of toxic textile dyes from aqueous solution through adsorption onto coconut husk waste: Thermodynamic and isotherm studies. Casp. J. Environ. Sci.2021;19(3):513-22. https://doi.org/.10.22124/ CJES.2021.4937.
  11. Haki M, Imgharn A, Aarab N, Hsini A, Essekri A, Laabd M, et al. Efficient removal of crystal violet dye from aqueous solutions using sodium hydroxidemodified avocado shells: Kinetics and isotherms modeling. Water Sci. Technol. 2021;85(1). https://doi.org/10.2166/wst.2021 .451.
  12. Arora C, Sahu D, Bharti D, Tamrakar V, Soni S, Sharma S. Adsorption of hazardous dye crystal violet from industrial waste using low-cost adsorbent Chenopodium album. Desalin. Water Treat. 2019;167:324-332. https://doi.org/10.5004/dwt.2019.24595.
  13. Kyi PP, Quansah JO, Lee C-G, Moon J-K, Park S-J. The removal of crystal violet from textile wastewater using palm kernel shell-derived biochar. Appl. Sci. 2020;10(7):2251. https://doi.org/10. 3390/app10072251.
  14. Fabryanty R, Valencia C, Soetaredjo FE, Putro JN, Santoso SP, Kurniawan A, et al. Removal of crystal violet dye by adsorption using bentonite–alginate composite. J. Environ. Chem. Eng. 2017;5(6):5677-87. https://doi.org/10.1016/j.jece.2017.10.057.
  15. Kandisa RV, Saibaba KN, Shaik KB, Gopinath R. Dye removal by adsorption: a review. J. bioremediat. biodegrad. 2016;7(6):371. https://doi.org/10.4172/2155-6199.1000371.
  16. Nasrullah A, Bhat A, Naeem A, Isa MH, Danish M. High surface area mesoporous activated carbon-alginate beads for efficient removal of methylene blue. Int. J. Biol. Macromol. 2018;107:1792-1799. https://doi.org/10.1016/j.ijbiomac.2017.10.045.
  17. Dutta S, Gupta B, Srivastava SK, Gupta AK. Recent advances on the removal of dyes from wastewater using various adsorbents: a critical review. Mater. Adv.2021;2(14):4497-4531. https:// doi.org/10.1039/D1MA00354B.
  18. Aziz F, Achaby ME, Lissaneddine A, Aziz K, Ouazzani N, Mamouni R, et al. Composites with alginate beads: A novel design of nano-adsorbents impregnation for large-scale continuous flow wastewater treatment pilots. Saudi J. Biol. Sci..2020;27(10):2499-2508. https://doi.org/ 10.1016 /j.sjbs.2019.11.019.
  19. Buhani, Suharso, Aditiya I, Al Kausar R, Sumadi, Rinawati. Production of a Spirulina sp. algae hybrid with a silica matrix as an effective adsorbent to absorb crystal violet and methylene blue in a solution. Sustain. Environ. Res. 2019;29(1):27. https://doi.org/10.1186/s42834-019-0027-2.
  20. Omokpariola D. Experimental Modelling Studies on the removal of Crystal Violet, Methylene blue and Malachite green dyes using Theobroma cacao (Cocoa Pod Powder). J. Chem. Lett. 2021; 2(1):9-24. 10.22034/JCHEMLETT.2021.272842.1020.
  21. Boucherdoud A, Kherroub D, Benaouda B, Benderdouche N, Douinat O. Fixed-bed adsorption dynamics of methylene blue from aqueous solution using alginate-activated carbon composites adsorbents. ASJP. 2020; 8(1). ISSN : 2437-1114.
  22. Daud M, Hai A, Banat F, Wazir MB, Habib M, Bharath G, et al. A review on the recent advances, challenges and future aspect of layered double hydroxides (LDH) – Containing hybrids as promising adsorbents for dyes removal. J. Mol. Liq. 2019;288:110989. https://doi.org/10. 1016/j.molliq .2019. 110989.
  23. Yagub MT, Sen TK, Afroze S, Ang HM. Dye and its removal from aqueous solution by adsorption: a review. Adv. Colloid Interface Sci.. 2014;209(1):172-84. https://doi.org/.10.1016 /j.cis .2014.04.002
  24. Priya R, Nithya R, Anuradha R, Kamachi T. Removal of colour from crystal violet dye using low cost adsorbents. Int J Chemtech Res. 2014;6(9):4346-4351. ISSN : 0974-4290.
  25. Jasri K, Abdulhameed AS, Jawad AH, Alothman ZA, Yousef TA, Al Duaij OK. Mesoporous activated carbon produced from mixed wastes of oil palm frond and palm kernel shell using microwave radiation-assisted K2CO3 activation for methylene blue dye removal: Optimization by response surface methodology. Diam Relat Mater. 2023;131(4):109581.https://doi.org/10. 1016 /j. diamond. 2022.109581.
  26. Raji Y, Nadi A, Mechnou I, Saadouni M, Cherkaoui O, Zyade S. High adsorption capacities of crystal violet dye by low-cost activated carbon prepared from Moroccan Moringa oleifera wastes: Characterization, adsorption and mechanism study. Diam Relat Mater. 2023;135: 109834. https://doi.org/10.1016/j.diamond.2023.109834.
  27. Goswami R, Dey AK. Synthesis and application of treated activated carbon for cationic dye removal from modelled aqueous solution. Arab. J. Chem. 2022;15(11):104290. https:// doi.org/10 .1016/j.arabjc.2022.104290.
  28. Jabar JM, Adebayo MA, Owokotomo IA, Odusote YA, Yılmaz M. Synthesis of high surface area mesoporous ZnCl2–activated cocoa (Theobroma cacao L) leaves biochar derived via pyrolysis for crystal violet dye removal. Heliyon. 2022;8(10):e10873. https://doi.org/10.1016/j.heliyon.2022.e 10873
  29. Neolaka YAB, Riwu AAP, Aigbe UO, Ukhurebor KE, Onyancha RB, Darmokoesoemo H, et al. Potential of activated carbon from various sources as a low-cost adsorbent to remove heavy metals and synthetic dyes. Results Chem. 2023;5:100711. https://doi.org/10.1016/j.rechem.2022.100711.
  30. Setiawan A, Dianti LR, Mayangsari NE, Widiana DR, Dermawan D. Removal of methylene blue using heterogeneous Fenton process with Fe impregnated kepok banana (Musa acuminate L.) peel activated carbon as catalyst. Inorg Chem Commun. 2023;152(3):110715. https://doi. org/10.1016/j. inoche.2023.110715.
  31. Mahmoodi NM, Hayati B, Arami M. Isotherm and Kinetic Studies of Dye Removal from Colored Textile Wastewater Using Date Seed. JCST 2011;5(4):325-333. [In persian]
  32. Athari MJ, Tahmasebpoor M. Experimental Study on the Crystal Violet Dye Removal from Water Using Activated Carbon Prepared from Oleaster Seed and Peel. JCST. 2023;16(4):325-41. https://dorl. net/dor/20.1001.1.17358779.1401.16.4.4.2  [In persian]
  33. Badeenezhad A, Azhdarpoor A, Bahrami S, Yousefinejad S. Removal of methylene blue dye from aqueous solutions by natural clinoptilolite and clinoptilolite modified by iron oxide nanoparticles. Mol Simul. 2019;45(7):564-571. https://doi.org/10.1080/08927022.2018.1564077.
  34. Kumar R, Chawla J. Removal of cadmium ion from water/wastewater by nano-metal oxides: a review. Water Qual Expo Health. 2014;5:215-226. https://doi.org/10.1007/s12403-013-0100-8.
  35. Mohseni-Bandpi A, Al-Musawi TJ, Ghahramani E, Zarrabi M, Mohebi S, Vahed SA. Improvement of zeolite adsorption capacity for cephalexin by coating with magnetic Fe3O4 nanoparticles. J. Mol. Liq.. 2016;218(5):615-24. https://doi.org/10.1016/j.molliq.2016.02.092.
  36. Tahmasebpoor M, Hosseini Nami S, Khatamian M, Sanaei L. Arsenate removal from contaminated water using Fe2O3-clinoptilolite powder and granule. Environ. Technol. 2022;43(1):116-30. https:// doi.org/10.1080/09593330.2020.1779821.
  37. Ren Z, Yang X, Zhang W, Zhao Z. Preparation, characterization and performance of a novel magnetic Fe-Zn activated carbon for efficient removal of dyes from wastewater. J. Mol. Struct.. 2023;1274:134407. https://doi.org/10.1016/j.molstruc.2022.134407.
  38. Wu W, Wu C, Zhang G, Liu J, Li Y, Li G. Synthesis and characterization of magnetic K2CO3-activated carbon produced from bamboo shoot for the adsorption of Rhodamine b and CO2 capture. Fuel. 2023;332(11):126107. https://doi.org/10.1016/j.fuel.2022.126107.
  39. Subbaiah Munagapati V, Wen H-Y, Gollakota ARK, Wen J-C, Shu C-M, Andrew Lin K-Y, et al. Enhanced removal of anionic Methyl orange azo dye by an iron oxide (Fe3O4) loaded lotus leaf powder (LLP@Fe3O4) composite: Synthesis, characterization, kinetics, isotherms, and thermodynamic perspectives. Inorg. Chem. Commun.. 2023;151:110625. https://doi .org/10.1016 /j.inoche.2023.110625.
  40. Zhou Q-Q, Qiu L, Zhu M-Q. Eucommia ulmoides Oliver derived magnetic activated carbon for eliminating methylene blue from dyeing wastewater and its economic efficiency assessment. Ind. Crops Prod. 2022;187:115537. https://doi.org/10.1016/j.indcrop.2022.115537.
  41. Kakavandi B, Rezaei Kalantary R, Esrafili A, Jonidi Jafari A, Azari A. Isotherm, Kinetic and Thermodynamic of Reactive Blue 5 (RB5) Dye Adsorption Using Fe3O4 Nanoparticles and Activated Carbon Magnetic Composite. JCST. 2013;7(3):237-48 [In persian]
  42. Altintig E, Onaran M, Sarı A, Altundag H, Tuzen M. Preparation, characterization and evaluation of bio-based magnetic activated carbon for effective adsorption of malachite green from aqueous solution. Mater. Chem. Phys..2018;220:313-21. https://doi.org/10.1016/j. matchemphys .2018.05.077
  43. Noori M, Tahmasebpoor M, Khazini L. Effective Parameters on the Formation of Natural Zeolite-Based Granules to Remove Cationic Dyes from Contaminated Water. IJPST. 2021;34(3):267-79. https://doi.org/10.22063/JIPST.2021.1823 [In persian]
  44. Sanaei L, Tahmasebpoor M. Physical appearance and arsenate removal efficiency of Fe(III)-modified clinoptilolite beads affected by alginate-wet-granulation process parameters. Mater. Chem. Phys. 2021;259:124009. https://doi.org/10.1016/j.matchemphys.2020.124009.
  45. Thakur S, Sharma B, Verma A, Chaudhary J, Tamulevicius S, Thakur VK. Recent progress in sodium alginate based sustainable hydrogels for environmental applications. J. Clean. Prod. 2018 ;198 :143-59. https://doi.org/10.1016/j.jclepro.2018.06.259.
  46. Chen J, Ouyang J, Cai X, Xing X, Zhou L, Liu Z, et al. Removal of ciprofloxacin from water by millimeter-sized sodium alginate/H3PO4 activated corncob-based biochar composite beads. Sep. Purif. Technol. 2021;276:119371. https://doi.org/10.1016/j .seppur.2021. 119371.
  47. Zhang Z-H, Xu J-Y, Yang X-L. MXene/Sodium Alginate Gel Beads for Adsorption of Methylene Blue. Mater. Chem. Phys. 2020;260:124123. https://doi.org/10.1016/j. matchemphys .2020.124123.
  48. Shamsudin MS, Azha SF, Sellaoui L, Badawi M, Bonilla-Petriciolet A, Ismail S. Performance and interactions of diclofenac adsorption using Alginate/Carbon-based Films: Experimental investigation and statistical physics modelling. Chem. Eng. J. 2022;428(5):131929.https://doi.org/ 10.1016/j .cej. 2021.131929.
  49. Reveendran Gap, Ong S-T. Application of experimental design for dyes removal in aqueous environment by using sodium alginate-TiO2 thin film. Chem. Data Collect. 2018;15-16:32-40 https://doi.org/ 10.1016/j.cdc.2018.03.002.
  50. Zhong Y, Yang M, Chen J, Mi H, Ge Y, Lv J, et al. Pre-crosslinking with putrescine improves mechanical and thermal properties of alginate film. Int. J. Food Eng.2023;340:111314. https://doi. org/10.1016/j.jfoodeng.2022.111314.
  51. Amiri S, Vatanpour V, He T. Antifouling thin-film nanocomposite NF membrane with polyvinyl alcohol-sodium alginate-graphene oxide nanocomposite hydrogel coated layer for As(III) removal. Chemosphere. 2023;322:138159. https://doi.org/10.1016/j.chemosphere.2023.138159.
  52. Zainol Abidin NA. Activated Carbon-Limestone-Alginate Beads for the Simultaneous Removal of Color and Turbidity of Kerian River. Int. J. Integr. Eng. 2019;11(2): 032–039.https://doi.org/10.30880 /ijie.2019 .11.02.004.
  53. Alamin NU, Khan AS, Nasrullah A, Iqbal J, Ullah Z, Din IU, et al. Activated carbon-alginate beads impregnated with surfactant as sustainable adsorbent for efficient removal of methylene blue. Int. J. Biol. Macromol. 2021;176:233-43. https://doi.org/10.1016/ j.ijbiomac.2021.02.017.
  54. Purnaningtyas M, Sudiono S, Siswanta D. Synthesis of Activated Carbon/Chitosan/Alginate Beads Powder as an Adsorbent for Methylene Blue and Methyl Violet 2B Dyes. Indones. J. Chem. 2020;20(5):1119. https://doi.org/10.22146/ijc.49026.
  55. Yaqub A, Syed SM, Ajab H, Zia Ul Haq M. Activated carbon derived from Dodonaea Viscosa into beads of calcium-alginate for the sorption of methylene blue (MB): Kinetics, equilibrium and thermodynamics. J. Environ. Manage. 2023;327:116925. https://doi.org/10.1016 /j.jenvman .2022. 116925
  56. Jung K-W, Choi BH, Hwang M-J, Jeong T-U, Ahn K-H. Fabrication of granular activated carbons derived from spent coffee grounds by entrapment in calcium alginate beads for adsorption of acid orange 7 and methylene blue. Bioresour. Technol. 2016;219:185-95. https://doi.org/10.1016 /j.biortech.2016.07.098.
  57. Dong Y, Dong W, Cao Y, Han Z, Ding Z. Preparation and catalytic activity of Fe alginate gel beads for oxidative degradation of azo dyes under visible light irradiation. Catal. Today. 2011;175(1):346-55. https://doi.org/10.1016/j.cattod.2011.03.035.
  58. Peighambardoust SJ, Foroutan R, Peighambardoust SH, Khatooni H, Ramavandi B. Decoration of Citrus limon wood carbon with Fe3O4 to enhanced Cd2+ removal: A reclaimable and magnetic nanocomposite. Chemosphere. 2021;282:131088. https://doi.org/10.1016/j.chemosphere.2021. 131088.
  59. Noori M, Tahmasebpoor M. Simultaneous Removal of Methylene Blue and Crystal Violet Dyes from Aqueous Solutions Using Magnetic Granular Adsorbent Based on Clinoptilolite/Alginate. JCST 2023;17(1):33-50. https://dorl.net/dor/20.1001.1. 17358779.1402.17.1.3.2 [In persian]
  60. Borghei SA, Zare MH, Ahmadi M, Sadeghi MH, Marjani A, Shirazian S, et al. Synthesis of multi-application activated carbon from oak seeds by KOH activation for methylene blue adsorption and electrochemical supercapacitor electrode. Arabian J. Chem. 2021;14(2):102958. https://doi.org /10. 1016/j.arabjc.2020.102958.
  61. Thabede PM, Shooto ND, Naidoo EB. Removal of methylene blue dye and lead ions from aqueous solution using activated carbon from black cumin seeds. S. Afr. J. Chem. Eng. 2020;33:39-50. https://doi.org/10.1016/j.sajce.2020.04.002.
  62. Anyika C, Asri NAM, Majid ZA, Yahya A, Jaafar J. Synthesis and characterization of magnetic activated carbon developed from palm kernel shells. Nanotechnol. Environ. Eng. 2017;2(1):1-25. https://doi.org/10.1007/s41204-017-0027-6.
  63. 63. Lalhmunsiama L, Pawar DR, Hong S-M, Jin K, Lee S-M. Iron-oxide modified sericite alginate beads: A sustainable adsorbent for the removal of As(V) and Pb(II) from aqueous solutions. J. Mol. Liq. 2017;240: 497-503. https://doi.org/10.1016/j.molliq.2017.05.086.
  64. Hakim L, Sedyadi E. Synthesis and Characterization of Fe3O4 Composites Embeded on Coconut Shell Activated Carbon. JKPK. 2020;5(3):9. https://doi.org/10.20961/jkpk.v5i3.46543.
  65. Yang X, Li Y, Du Q, Sun J, Chen L, Hu S, et al. Highly effective removal of basic fuchsin from aqueous solutions by anionic polyacrylamide/graphene oxide aerogels. J. Colloid Interface Sci.. 2015;453(122):107-14. https://doi.org/10.1016/j.jcis.2015.04.042.
  66. Mouni L, Belkhiri L, Bollinger J-C, Bouzaza A, Assadi A, Tirri A, et al. Removal of Methylene Blue from aqueous solutions by adsorption on Kaolin: Kinetic and equilibrium studies. Appl. Clay Sci.. 2018;153:38-45. https://doi.org/10.1016/j.clay.2017.11.034.
  67. Benhalima T, Ferfera-Harrar H. Eco-friendly porous carboxymethyl cellulose/dextran sulfate composite beads as reusable and efficient adsorbents of cationic dye methylene blue. Int. J. Biol. Macromol. 2019;132:126-41. https://doi.org/10.1016/j.ijbiomac .2019 .03.164.
  68. Elsherif K, El-Dali A, Alkarewi A, Ewlad-Ahmed A, Treban A. Adsorption of crystal violet dye onto olive leaves powder: Equilibrium and kinetic studies. KM Elsherif, A El-Dali, AA Alkarewi, AM Ewlad-Ahmed and A Treban Adsorption of crystal violet dye onto olive leaves powder: Equilibrium and kinetic studies. ChemInt. 2021;7(2):79-89.https://doi.org/10.5281/zenodo. 4441851.
  69. Nwosu‐Obieogu K, Okolo BI. Biosorption of chromium (VI) from textile waste water using luffa cylindrica activated carbon. Environ. Qual. Manag. 2020;29(4):2331.https://doi.org /10.1002/tqem . 21687
  70. Abdolhosseinzadeh M, Peighambardoust SJ, Erfan-Niya H, Mohammadzadeh Pakdel P. Swelling and auramine-O adsorption of carboxymethyl cellulose grafted poly(methyl methacrylate)/Cloisite 30B nanocomposite hydrogels.             Iran. Polym. J. 2018;27(10):807-18. https://doi.org/10. 1007/s13726-018-0654-1.
  71. Ali RM, Hamad HA, Hussein MM, Malash GF. Potential of using green adsorbent of heavy metal removal from aqueous solutions: Adsorption kinetics, isotherm, thermodynamic, mechanism and economic analysis. Ecol. Eng.. 2016;91:317-32. https://doi.org/10.1016/j.ecoleng. 2016.03.015.
  72. Foroutan R, Mohammadi R, Ahmadi A, Bikhabar G, Babaei F, Ramavandi B. Impact of ZnO and Fe3O4 magnetic nanoscale on the methyl violet 2B removal efficiency of the activated carbon oak wood. Chemosphere. 2022;286(1):131632. https://doi.org/10.1016/j.chemosphere.2021.131632.
  73. Hu Q, Zhang Z. Application of Dubinin–Radushkevich isotherm model at the solid/solution interface: A theoretical analysis. J. Mol. Liq. 2019;277:646-8. https://doi.org/10.1016/j.molliq .2019 .01.005.
  74. Simonin J-P. On the comparison of pseudo-first order and pseudo-second order rate laws in the modeling of adsorption kinetics. Chem. Eng. J. 2016;300:254-63. https://doi.org/ 10.1016/j.cej .2016 .04.079.
  75. Joshi NC, Sharma R, Singh A. Biosorption: A review on heavy metal toxicity and advances of biosorption on conventional methods. J Chem Chem Sci. 2017;7(9):714-24.
  76. Wang Y, Zhang Y, Li S, Zhong W, Wei W. Enhanced methylene blue adsorption onto activated reed-derived biochar by tannic acid. J. Mol. Liq.. 2018;268:658-66. https://doi.org/ 10.1016/j. molliq. 2018.07.085
  77. Djelad A, Mokhtar A, Khelifa A, Bengueddach A, Sassi M. Alginate-whey an effective and green adsorbent for crystal violet removal: Kinetic, thermodynamic and mechanism studies. Int. J. Biol. Macromol. 2019;139(1):944-54. https://doi.org/10.1016/ j.ijbiomac.2019 .08.068
  78. Nanthamathee C, Dechatiwongse P. Kinetic and thermodynamic studies of neutral dye removal from water using zirconium metal-organic framework analogues. Mater. Chem. Phys. 2021;258: 123924. https://doi.org/10.1016/j.matchemphys.2020.123924.
  79. Hamidzadeh S, Torabbeigi M, Shahtaheri SJ. Removal of crystal violet from water by magnetically modified activated carbon and nanomagnetic iron oxide. J Environ Health Sci Eng. 2015;13(1):8. https://doi.org/10.1186/s40201-015-0156-4.
  80. Foroutan R, Peighambardoust SJ, Peighambardoust SH, Pateiro M, Lorenzo JM. Adsorption of Crystal Violet Dye Using Activated Carbon of Lemon Wood and Activated Carbon/Fe3O4 Magnetic Nanocomposite from Aqueous Solutions: A Kinetic, Equilibrium and Thermodynamic Study. Molecules. 2021;26(8):2241. https://doi.org/10.3390/molecules26082241.
  81. Akram M, Salman M, Rehman R, Farooq U, Tahir S, Nazir H. Kinetic and Isothermal Investigations of Cost-Effective Sorptive Elimination of Gentian Violet Dye from Water Using Haplophragma adenophyllum Biowaste. J. Chem. 2021;2021:1-12. https://doi.org/10. 1155/ 2021 /5549536.
  82. Tan IAW, Hameed B. Removal of crystal violet dye from aqueous solutions using rubber (hevea brasillensis) seed shell-based biosorbent. Desalin. Water Treat. 2012;48(1):174-181. https:// doi.org/ 10.1080/19443994.2012.698810.
  83. Maleki S, Falaki F, Karimi M. Synthesis of SDS micelles-coated Fe3O4/SiO2 magnetic nanoparticles as an excellent adsorbent for facile removal and concentration of crystal violet from natural water samples. J NANOSTRUCTURE CHEM 2019;9(2):129-39. https://doi.org/10 .1007/s 40097-019-0303-z.
  84.  Gemi̇ci̇ B, Ucun Ozel H, Ozel H. Adsorption behaviors of crystal violet from aqueous solution using Anatolian black pine ( Pinus nigra Arnold.): kinetic and equilibrium studies. Sep. Sci. Technol. 2019;55(6):1-9. https://doi.org/10.1080/01496395.2019.1577268.
  85. Zehra T, Priyantha N, Lim LBL. Removal of crystal violet dye from aqueous solution using yeast-treated peat as adsorbent: thermodynamics, kinetics, and equilibrium studies. Environ. Earth Sci. 2016;75(4):357. https://doi.org/10.1007/s12665-016-5255-8.
  86.  Alizadeh N, Shariati S, Besharati N. Adsorption of Crystal Violet and Methylene Blue on Azolla and Fig Leaves Modified with Magnetite Iron Oxide Nanoparticles. Int J Environ Res. 2017;11(2):197-206. https://doi.org/10.1007/s41742-017-0019-1
  87. Satapathy MK, Das P. Optimization of crystal violet dye removal using novel soil-silver nanocomposite as nanoadsorbent using response surface methodology. J. Environ. Chem. Eng. 2014; 2(1):708-14. https://doi.org/10.1016/j.jece.2013.11.012.
  88.  Jayasantha Kumari H, Krishnamoorthy P, Arumugam TK, Radhakrishnan S, Vasudevan D. An efficient removal of crystal violet dye from waste water by adsorption onto TLAC/Chitosan composite: A novel low cost adsorbent. Int. J. Biol. Macromol. 2017;96:324-33.https://doi.org/10.1016/j. ijbiomac.2016.11.077.
  89. Duraipandian J, Rengasamy T, Vadivelu S. Experimental and Modeling Studies for the Removal of Crystal Violet Dye from Aqueous Solutions using Eco-friendly Gracilaria corticata Seaweed Activated Carbon/Zn/Alginate Polymeric Composite Beads. J Polym Environ. 2017;25(4):1062-71. https://doi.org/10.1007/s10924-016-0879-z.
  90.  Albishri WS, Katouah HA. Functionalization of sodium magnesium silicate hydroxide/sodium magnesium silicate hydrate nanostructures by chitosan as a novel nanocomposite for efficient removal of methylene blue and crystal violet dyes from aqueous media. Arab. J. Chem. 2023;16(7):104804. https://doi.org/10.1016/j.arabjc.2023.104804.
  91. Darvishi Cheshmeh Soltani R, Khataee A, Godini H, Safari M, Ghanadzadeh M, Rajaei M. Response surface methodological evaluation of the adsorption of textile dye onto biosilica/alginate nanobiocomposite: thermodynamic, kinetic, and isotherm studies. Desalin. Water Treat. 2015 ;56(5):1389-402. https://doi.org/10.1080/19443994.2014.950344.
  92. Mohamed S, Hegazy SH, Abdelwahab N, Ramadan A. Coupled adsorption-photocatalytic degradation of crystal violet under sunlight using chemically synthesized grafted sodium alginate/ZnO/graphene oxide composite. Int. J. Biol. Macromol. 2018;108(211):1185-98. https://doi.org/10.1016/j.ijbiomac.2017.11.028