ارزیابی عملکرد کاتالیزور نوری MnCeOx/TiO2 در حذف رنگزاهای آلی در نور مرئی

نوع مقاله : مقاله پژوهشی

نویسنده

گروه شیمی کاربردی، دانشکده علوم پایه، دانشگاه کوثر بجنورد، بجنورد، ایران، کد پستی: ۹۴۵۳۱۵۵۱۶۸

10.30509/jcst.2026.167706.1275

چکیده

در این پژوهش، کاتالیزوز نوری MnCeOx/TiO2 سنتز و عملکرد آن در رنگ‌زدایی کاتالیزوری چهار رنگزای آلی شامل متیلن بلو (MB)، متیل رد (MR)، رودامین­بی (RhB) و مالاشیت گرین (MG) در نور مرئی بررسی شد. بیشترین بازده رنگ‌زدایی مربوط به MB (حدود 4/92 درصد) بود و بازده سایر رنگزاهای MG، RhB و MR به ترتیب در حدود 5/65، 8/24 و 3/19 درصد به‌دست آمد. با استفاده از روش سطح پاسخ و مدل درجه دوم، اثر pH، زمان تابش، غلظت رنگزا و مقدار کاتالیست بر بازده بررسی و شرایط بهینه شامل pH برابر 3، زمان تابش 35 دقیقه در غلظت رنگزا ppm 7 و جرم کاتالیستg  3/0 تعیین شد. سازوکار نشان داد که تولید گونه‌های فعال اکسیژن از طریق جدایش جفت الکترون–حفره و تله‌های الکترونی Mn و Ce، عامل اصلی تخریب گروه‌های رنگ‌ساز است. تحلیل سینتیکی کاتالیزوری نوری MB مطابق مدل شبه‌مرتبه اول با min-1 0471/0k ≈  و نیمه‌عمر ≈ 7/14دقیقه انجام شد. نتایج نشان‌دهنده فعالیت بالا، پایداری و قابلیت بازیابی این کاتالیزور نوری است.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Evaluation of MnCeOx/TiO2 Photocatalyst Performance for Visible-Light-Induced Decolorization of Organic Dyes

نویسنده [English]

  • Nastaran Parsafard
Department of Applied Chemistry, Faculty of Basic Sciences, Kosar University of Bojnord, P.O. Code: 9453155168, Bojnord, Iran
چکیده [English]

In this study, the MnCeOx/TiO2 photocatalyst was synthesized, and its performance in the visible-light photocatalytic decolorization of four organic dyes, including methylene blue (MB), methyl red (MR), rhodamine B (RhB), and malachite green (MG), was investigated. The highest decolorization efficiency was observed for MB (≈92.4 %), while the efficiencies for MG, RhB, and MR were ≈65.5, 24.8, and 19.3 %, respectively. Using response surface methodology (RSM) with a second-order model, the effects of pH, irradiation time, dye concentration, and catalyst dosage on decolorization were evaluated, and the optimal conditions were determined as pH ≈ 3, irradiation time ≈ 35 min, dye concentration ≈ 7 ppm, and catalyst mass ≈ 0.3 g. Mechanistic analysis indicated that the generation of reactive oxygen species through electron–hole separation and Mn/Ce electron traps is the main factor in chromophore degradation. Kinetic studies showed that MB decolorization follows a pseudo-first-order model with k ≈ 0.0471 min-1 and a half-life of ≈14.7 min. The results demonstrate high photocatalytic activity, stability, and reusability of this photocatalyst.

کلیدواژه‌ها [English]

  • MnCeOx/TiO2
  • Photocatalyst
  • Methylene blue
  • Response Surface Methodology
  • Visible light
  • Wastewater treatment
  1. Parsafard N, Abedi R, Moodi H. Ternary tin-doped titanium dioxide/calcium oxide (Sn–TiO2/CaO) composite as a photocatalyst for efficient removal of toxic dyes. RSC Adv. 2024;14(28),19984-19995. https://doi.org/10.1039/D4RA03 641G.
  2. Parsafard N, Shoorgashti Z. The effect of transition metal oxides in the La/TiO2 structure for the photocatalytic degradation of malachite green under UV and visible light irradiation. Appl Water Sci. 2024;14(10):220. https://doi. org/10.1007/s13201-024-02285-1.
  3. Nhu VTT, QuangMinh D, Duy NN, QuocHien N. Photocatalytic degradation of azo dye (methyl red) in water under visible light using Ag–Ni/TiO2 synthesized by γ–irradiation method. Int J Environ Agric Biotechnol. 2017; 2(1):238701. http://dx.doi.org/10.22161/ijeab/2.1.66.
  4. Haleem A, Ullah M, Rehman SU, Shah AF, Farooq M, Saeed T, Li H. In-depth photocatalytic degradation mechanism of the extensively used dyes malachite green, methylene blue, congo red, and rhodamine B via covalent organic framework-based photocatalysts. Water, 2024;16: 1588. https://doi.org/10.3390/w16111588.
  5. Reza KM, Kurny ASW, Gulshan F. Parameters affecting the photocatalytic degradation of dyes using TiO2: a review. Appl Water Sci. 2017;7(4),1569-1578. https://doi.org/10. 1007/s13201-015-0367-y.
  6. Mascolo G, Comparelli R, Curri ML, Lovecchio G, Lopez A, Agostiano A. Photocatalytic degradation of methyl red by TiO2: Comparison of the efficiency of immobilized nanoparticles versus conventional suspended catalyst. J Hazard Mater. 2007;142(1–2):130–137. https://doi.org/10. 1016/ j.jhazmat.2006.07.068
  7. Loo WW, Pang YL, Lim S, Wong KH, Lai CW, Abdullah, AZ. Enhancement of photocatalytic degradation of malachite green using iron doped titanium dioxide loaded on oil palm empty fruit bunch-derived activated carbon. Chemosphere, 2021:272:129588. https://doi.org/10.1016/j. chemosphere.2021.129588
  8. Parsafard N, Shabani F. Photocatalytic decolorization of methyl orange using MnCeOx–TiO2 composite catalyst: experimental evaluation and statistical analysis. BMC Chemistry.2025;19:296. https://doi.org/101186/s13065-025- 01655-3.
  9. Ullah I, Tariq M, Muhammad M, Khan J, Rahim A, Abdullah AZ. UV photocatalytic remediation of methyl red in aqueous medium by sulfate (SO4•–) and hydroxyl (•OH) radicals in the presence of Fe2+ and Co@TiO2 NPs photocatalysts. Colloids Surf A. 2023;679:132614. https://doi.org/10.1016/j.colsurfa.2023.13261.
  10. Mishra S, Chakinala N, Chakinala AG, Surolia PK. Photo-catalytic degradation of methylene blue using monometallic and bimetallic Bi–Fe doped TiO2. Catal Commun. 2022; 171:106518. https://doi.org/10.1016/j. catcom. 2022.106518.
  11. Thota S, Tirukkovalluri SR, Bojja S. Visible light induced photocatalytic degradation of methyl red with codoped titania. J Catal. 2014(1),962419. https://doi.org/10.1155/ 2014/962419.
  12. Lee SY, Kang D, Jeong S, Do HT, Kim JH. Photocatalytic degradation of rhodamine B dye by TiO2 and gold nanoparticles supported on a floating porous PDMS sponge under ultraviolet and visible light irradiation. ACS Omega, 2020;5:4233-4241. https://doi.org/10.1021/acsomega.9b04 127.
  13. Utami M, Wang S, Fajarwati FI, Salsabilla SN, Dewi TA, Fitri M. Enhanced photodegradation of rhodamine B using visible-light sensitive N–TiO2/rGO composite. Crystals, 2023;13(4), 588. https://doi.org/10.3390/cryst13040588.
  14. Mostafa EM, Amdeha E. Enhanced photocatalytic degradation of malachite green dye by highly stable visible-light-responsive Fe-based tri-composite photocatalysts. Environ Sci Pollut Res. 2022;29(46), 69861–69874. https://doi.org/10.1007/s11356-022-20745-6.
  15. Salehi G, Bagherzadeh M, Abazari R, Hajilo M, Taherinia D. Visible light-driven photocatalytic degradation of methylene blue dye using a highly efficient Mg–Al LDH @g-C3N4@Ag3PO4 nanocomposite. ACS Omega. 2024; 9(4):4581–4593. https://doi.org/10.1021/acsomega.3c07326.
  16. Li Y, Li X, Li J, Yin J. Photocatalytic degradation of methyl orange by TiO2-coated activated carbon and kinetic study. Water Res. 2006;40(6): 1119-1126. https://doi.org/10.1016/ j.watres.2005.12.042.
  17. Zhang F, Zhao L, Chen H, He Y, Tian P, Zeng X. Synthesis of mesoporous Fe/h–CeO2 hollow micro-spheres with enhanced visible light photocatalytic activity. Mater Res Express. 2019;6(9): 095516. https://doi.org/10.1088/2053-1591/ab3015.
  18. Stojadinović S. Photocatalytic degradation of methyl orange in wastewater using TiO2-based coatings prepared by plasma electrolytic oxidation of titanium: A review. React. 2025;6(2): 25. https://doi.org/10.3390/reactions6020025.
  19. Gadore V, Singh AK, Mishra SR, Ahmaruzzaman M. RSM approach for process optimization of the photodegradation of congo red by a novel NiCo2S4/chitosan photocatalyst. Sci Rep. 2024;14(1): 1118. https://doi.org/10.1038/s41598-024-51618-2.
  20. Vaez M, Zarringhalam Moghaddam A, Alijani S. Optimization and modeling of photocatalytic degradation of azo dye using a response surface methodology (RSM) based on the central composite design with immobilized titania nanoparticles. Ind Eng Chem Res. 2012;51(11): 4199–4207. https://doi.org/10.1021/ie202809w.
  21. Talebi R. New method for preparation of Mn2O3–TiO2 nanocomposites and study of their photocatalytic properties. J Mater Sci: Mater Electron. 2017;28(11):8316–8321. https://doi.org/10.1007/s10854-017-6546-x.
  22. Shu Y, Sun H, Quan X, Chen S. Enhancement of catalytic activity over the iron-modified Ce/TiO2 catalyst for selective catalytic reduction of NOx with ammonia. J Phys Chem C. 2012;116(48): 25319–25327. https://doi.org/10.1021/jp30 7038q.
  23. Parsafard N. Comprehensive investigation of photocatalytic performance of La/TiO2–Fe2O3 composite in the degradation of five different dyes under optimized pH and time con-ditions. J Stud Color World, 2025;15(2):211-225. https://doi. org/10.30509/JSCW.2025.167442.1218 [In Persian].
  24. Fujishima A, Zhang X, Tryk DA. TiO2 photocatalysis and related surface phenomena. Surf Sci Rep. 2008;63(12): 515-582. https://doi.org/10.1016/j.surfrep.2008.10.001.
  25. Hoffmann MR, Martin ST, Choi W, Bahnemann DW. Environmental applications of semiconductor photo-catalysis. Chem Rev. 1995;95(1):69-96. https://doi.org/10. 1021/cr00033a004.
  26. Sangeetha M, Kalpana S, Senthilkumar N, Senthil TS. Investigation on visible-light induced photocatalytic activity for pure, Ce: doped TiO2 and B: Ce co-doped TiO2 catalysts. Optik. 2024;301:171687. https://doi.org/10.1016/j.ijleo. 2024.171687.
  27. Liu S, Yang H, Huang X, Tian P. Synergistic effect of Mn and Ce co-doping on TiO2 photocatalysts for efficient degradation of organic pollutants. J Hazard Mater. 2020; 392:122280. https://doi.org/10.1002/tcr.202500022.
  28. Zhang L, Wang W, Chen Z, Zhou L. Role of multivalent metal ions in suppressing charge recombination in TiO2-based photocatalysts. Catal Today. 2021;361:45-53. https://doi.org/10.1016/j.scenv.2024.100177.
  29. Polido B, Liccardo L, Cattaneo B. Rodríguez-Castellón E, Vomiero A, Moretti E. Ce3+/Ce4+-Modified TiO2 Nano-flowers: Boosting Solar Photocatalytic Efficiency. Catalysts, 2025;15(11): 1069. https://doi.org/10.3390/catal15111069.
  30. Chong MN, Jin B, Chow CWK, Saint C. Recent developments in photocatalytic water treatment technology: A review. Water Res. 2010;44(10):2997-3027. https://doi. org/ 10.1016/j.watres.2010.02.039.
  31. Herrmann JM. Heterogeneous photocatalysis: Fundamentals and applications to the removal of various types of aqueous pollutants. Catal Today, 1999;53(1):115-129. https://doi.org/ 10.1016/S0920-5861(99)00107-8.
  32. Chen W, Xiao H, Xu H, Ding T, Gu Y. Photodegradation of Methylene Blue by TiO2–Fe3O4–Bentonite magnetic nanocomposite. Int J Photoenergy. 2015;591428. https://doi .org/10.1155/2015/591428.
  33. Azeez F, Al-Hetlani E, Arafa M, Abdelmonem Y, Nazeer AA, Amin MO, Madkour M. The effect of surface charge on photocatalytic degradation of methylene blue dye using chargeable titania nanoparticles. Sci Rep. 2018;8:7104. https://doi.org/10.1038/s41598-018-25673-5.