بررسی اثر سطح‌فعال‌های اتوکسیله بر خواص نانوپراکنه رنگزای آبی دیسپرس ۳۵۹ برای کاربرد در جوهرهای جوهرافشان

نوع مقاله : مقاله پژوهشی

نویسنده

گروه پژوهشی علوم و فناوری چاپ، پژوهشکده فیزیک رنگ، پژوهشگاه رنگ، تهران، ایران، صندوق‌پستی: 654-167654

10.30509/jcst.2025.167722.1276

چکیده

فرمول‌بندی جوهرهای جوهرافشان نیازمند دستیابی به نانوپراکنه‌های پایدار با اندازه ذرات ریز و توزیع باریک است. در این پژوهش، اثر دو سطح‌فعال غیریونی اسید اولئیک ۶ مول اتوکسیله (Kl6) و اسید اولئیک ۹ مول اتوکسیله (Kl9) بر خواص پراکنه رنگزای دیسپرس آبی ۳۵۹ مورد بررسی قرار گرفت. کنسانتره‌های رنگزا با استفاده از جارمیل تهیه شدند. اثر نوع سطح‌فعال و غلظت آن (35/0 و 7/0 درصد وزنی) بر قدرت رنگی در زمان‌های مختلف آسیاب (۷۲، ۹۶، ۱۲۰ و ۱۶۸ ساعت)، توزیع اندازه ذرات، کشش‌سطحی، پایداری پراکنه (به‌واسطه اندازه‌گیری تغییرات کدورت) و خواص رئولوژیکی مطالعه شد. نتایج نشان داد که Kl6 با داشتن عدد تعادل آب‌دوست-چربی‌دوست (HLB) پایین‌تر (۹/۹ در مقابل 6/11) و زنجیر اتوکسیله کوتاه‌تر، جذب سریع‌تر و کارایی بهتری در کاهش اندازه ذرات و کشش‌سطحی دارد. در غلظت 7/0 درصد، هر دو سطح‌فعال رفتار مشابهی در پایداری پراکنه و اندازه ذرات نشان می‌دهند. نمونه‌های حاوی سطح‌فعال رفتار رئولوژیکی شبه ‌نیوتنی و گرانروی پایین‌تری از خود نشان دادند که برای کاربرد جوهرافشان ایده‌آل است. در نهایت می‌توان نتیجه گرفت که استفاده بهینه از سطح‌فعال‌های غیریونی با ساختار مولکولی مناسب می‌تواند منجر به تولید نانوپراکنه‌های پایدار با خواص مطلوب برای جوهرهای جوهرافشان شود.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Investigation of the Effects of Ethoxylated Surfactants on the Nano-dispersion Properties of Disperse Blue 359 for Inkjet Ink Applications

نویسنده [English]

  • M. Jalili
Department of Printing Science and Technology, Faculty of color physics, Institute for Color Science and Technology, P. O. Box: 16765-654, Tehran, Iran.
چکیده [English]

Formulating inkjet inks requires achieving stable nanodispersions with fine particle sizes and narrow particle size distributions. This study investigated the effects of two non-ionic surfactants- oleic acid 6-mol ethoxylate (Kl6) and oleic acid 9-mol ethoxylate (Kl9) - on the dispersion properties of disperse blue 359. Dye concentrates were prepared using a jar mill. Color strength at different milling times (72, 96, 120, and 168 hours), particle size distribution, surface tension, dispersion stability (assessed by turbidity measurements), and rheological properties were evaluated by varying the surfactant type and concentration (0.35% and 0.7% by weight). Results demonstrated that Kl6 had a shorter ethoxylate chain and a lower hydrophilic–lipophilic balance (HLB) (9.9) than Kl9 (11.6), leading to faster adsorption and greater effectiveness in reducing particle size and surface tension. At a concentration of 0.7%, both surfactants showed similar dispersion stability and particle size. Samples containing surfactants displayed quasi-Newtonian rheological behavior and lower viscosity, ideal for inkjet applications. In conclusion, the optimal use of non-ionic surfactants with appropriate molecular structures can lead to stable nanodispersions with desirable properties for inkjet inks.

کلیدواژه‌ها [English]

  • Inkjet
  • Nonionic surfactant
  • Ethoxylated Oleic acid
  • Nanodispersion
  • Disperse dye
  • Colloidal stability
  1. Suzuki K, Koseki K, Amari T. Dynamics of Droplet Forming in Ink Jet Printer. In: IS&Ts NIP 14: International Conference on Digital Printing Technologies. 1998;14:58-61. https://doi.org/10.2352/ISSN.2169-4451.1998.14.1.Art 00014 _1
  2. Steenweg K, Reinhold I, Mettin T, Struck S, Voit W, Zapka W. The Influence of Surfactants on the Interfacial Tension and Droplet Formation in UV Curable Jet Inks. In: NIP25 and Digital Fabrication. 2009;307-311.
  3. Sarma D, Maxwell I, Cartridge D. Improving the Performance Properties of Aqueous Based Ink-Jet. In: NIP26 and Digital Fabrication. 2010; 178-80.
  4. Ren G, Wang X, Zhang Z, Zhong B, Yang L, Yang X. Characterization and synthesis of nanometer magnetite black pigment from titanium slag by microwave-assisted reduction method. Dye Pigm. 2017;147:24–30. https://doi.org/10. 1016/j. dyepig.2017.07.068.
  5. Agbo C, Acheampong C, Zhang L, Li M, Fu SS. Preparing stable pigment dispersion utilizing polyoxyethylene lauryl ether as dispersant. Pigment Resin Technol. 2018;48(1):1–8. https://doi.org/10.1108/PRT-10-2017-0081.
  6. McKay RB. Influence of organic pigment particles on millbase flow of nitro-cellulose/alcohol-rich liquid inks. Prog Org Coat. 1998;33(3):187–95. https://doi.org/10.1016/ S0300-9440(98)00052-6.
  7. Duivenvoorde FL, Laven J, van der Linde R. Diblock copolymer dispersants in polyester powder coatings. Prog Org Coat. 2002;45(2):127–37. https://doi.org/10.1016/ S0300-9440(02)00046-2.
  8. Lin Y, Smith TW, Alexandridis P. Adsorption of a Rake-Type Siloxane Surfactant onto Carbon Black Nanoparticles Dispersed in Aqueous Media. Langmuir. 2002;18(16):6147–58. 10.1021/la011671t.
  9. Won YY, Meeker SP, Trappe V, Weitz DA, Diggs NZ, Emert JI. Effect of Temperature on Carbon-Black Agglo-meration in Hydrocarbon Liquid with Adsorbed Dispersant. Langmuir. 2005;21(3):924–32. 10.1021/la047906t.
  10. Aoki Y, Hatano A, Watanabe H. Rheology of carbon black suspensions. II. Well dispersed system. Rheol Acta. 2003; 42(4):321–5. 10.1007/s00397-003-0298-7.
  11. Aoki Y, Watanabe H. Rheology of carbon black sus-pensions. III. Sol-gel transition system. Rheol Acta. 2004;43(4):390–5. 10.1007/s00397-004-0355-x.
  12. Aoki Y. Rheological characterization of carbon black/ polystyrene solution systems. J Appl Polym Sci. 2008;108(4):2660–6. https://doi.org/10.1002/app.27650.
  13. Huang J, Shen F, Li X, Zhou X, Li B, Xu R, et al. Chemical modification of carbon black by a simple non-liquid-phase approach. J Colloid Interface Sci. 2008;328(1):92–97. https://doi.org/10.1016/j.jcis.2008.08.044.
  14. Jiang Z, Jin J, Xiao C, Li X. Effect of surface modification of carbon black (CB) on the morphology and crystallization of poly(ethylene terephthalate)/CB masterbatch. Colloids Surfaces A Physicochem Eng Asp. 2012;395:105–15. https://doi.org/10.1016/j.colsurfa.2011.12.013.
  15. Nsib F, Ayed N, Chevalier Y. Selection of dispersants for the dispersion of carbon black in organic medium. Prog Org Coatings. 2006;55(4):303–310. https://doi.org/10.1016/j. porgcoat.2005.11.006.
  16. Siebold A, Nardin M, Schultz J, Walliser A, Oppliger M. Effect of dynamic contact angle on capillary rise phenomena. Colloids Surfaces A Physicochem Eng Asp. 2000;161(1):81–87. https://doi.org/10.1016/S0927-7757(99) 00327-1.
  17. Sis H, Birinci M. Wetting and rheological characteristics of hydrophobic organic pigments in water in the presence of non-ionic surfactants. Colloids Surfaces A Physicochem Eng Asp. 2014;455:58–66. 10.1016/j.colsurfa.2014.04.042.
  18. Douillard JM, Pougnet S, Faucompre B. The Adsorption of Polyoxyethylenated Octyl and Nonylphenol Surfactants on Carbon Black and Sulfur from Aqueous Solutions. 1992; 154(1). https://doi.org/10.1016/0021-9797(92)90083-X.
  19. Jalili M, Mohammad Raei Naeini M, Bastani S, Ajili N. Optimizing the Surfactant/Polymeric Dispersant Combina-tion in Pigment-Based Aqueous Inkjet Inks. Prog Color Color Coatings. 2025;18(2):177–88. https://pccc.icrc.ac.ir/ article_ 82040.
  20. Jalili M, Mohammad Raei Naeini M. Sublimation Inkjet Ink Stability via Optimized Surfactant–DispersantLevels. J Appl Res Chem -Polymer Eng. Accepted for publication.