توسعه فیلم‌های انعطاف‌پذیر کربن فعال اصلاح‌شده با پلی‌یورتان برای حذف مؤثر متیلن بلو

نوع مقاله : مقاله پژوهشی

نویسندگان

دانشکده مهندسی شیمی و نفت، دانشگاه تبریز، تبریز، ایران، صندوق پستی: 51666-16471

10.30509/jcst.2025.167668.1272

چکیده

آلودگی آب ناشی از رنگزاهای صنعتی مانند متیلن بلو به دلیل پایداری شیمیایی و اثرات زیست‌محیطی منفی، چالشی جدی در مدیریت پساب‌ها است. این پژوهش به توسعه جاذب‌های کارآمد از فیلم‌های کربن فعال (FAC) تهیه‌شده از هسته سنجد با روش ژل آلژینات (AC-Alg) می‌پردازد. برای رفع شکنندگی و بهبود خواص مکانیکی جاذب، 5 تا 20 درصد وزنی پلی‌یورتان (PU) به جاذب اضافه شد. پودر کربن فعال از هسته سنجد تهیه شده و سپس جاذب فیلم کربنی با استفاده از آلژینات سدیم سنتز شده و در نهایت توسط پلی‌یورتان اصلاح گردید تا برای حذف رنگزای متیلن بلو استفاده شود. آزمایش‌های جذب‌ در شرایط بهینه (10pH=، مقدار جاذب g/L 1، غلظت رنگزا mg/L 10، دمای °C 25، زمان min 120) انجام شد. جاذب AC-Alg-5 % PU، بازده جذب 89 درصد و ظرفیت mg/g 17/27 داشت. آزمون‌های FE-SEM، BET و FTIR انجام شد. بررسی ایزوترم‌ها و مدل‌های سینتیکی جذب، نشان از جذب فیزیکی و شیمیایی به‌طور هم‌زمان دارند اما نتایج ترمودینامیک جذب حاکی از غالب بودن جذب فیزیکی است. این مطالعه، پتانسیل فیلم‌های انعطاف‌پذیر کربن فعال اصلاح‌شده با پلی‌یورتان و تهیه‌شده از ماده ارزان‌قیمت هسته سنجد را به‌عنوان گزینه‌ای جذاب برای تصفیه فاضلاب صنعتی و کاربرد در غشاها نشان می‌دهد.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Development of Flexible Polyurethane-modified Activated Carbon Films for Effective Removal of Methylene Blue

نویسندگان [English]

  • Mohadeseh Eskandarpour
  • Maryam Tahmasebpoor
Faculty of Chemical and Petroleum Engineering, University of Tabriz, P.O. Box: 16471-51666, Tabriz, Iran
چکیده [English]

Water pollution caused by industrial dyes such as methylene blue, due to their chemical stability and negative environmental impacts, poses a serious challenge in wastewater management. This research focuses on the development of efficient adsorbents from activated carbon films prepared from oleaster seeds using the alginate gel method. To address brittleness and improve the mechanical properties of the adsorbent, 5 to 20
 wt. % polyurethane was added. Activated carbon powder was prepared from oleaster seeds, and then the carbon film adsorbent was synthesized using sodium alginate and finally modified with polyurethane for the removal of methylene blue dye. Adsorption experiments were conducted under optimal conditions (pH=10, adsorbent dose 1 g/L, dye concentration 10 mg/L, temperature 25 °C, time 120 min). The AC-Alg-5 % PU adsorbent exhibited 89 % adsorption efficiency and a capacity of 27.17 mg/g. Analyses including FE-SEM, BET, and FTIR were performed. Examination of isotherms and kinetic models of adsorption indicate physical and chemical adsorption simultaneously, but the thermodynamic results of adsorption indicate the dominance of physical adsorption. This study demonstrates the potential of flexible activated carbon films modified with polyurethane and prepared from the low-cost oleaster seed material as an attractive option for industrial wastewater treatment and membranes applications.

کلیدواژه‌ها [English]

  • Wastewater treatment Methylene blue Activated carbon Film
  • Polyurethane Oleaser seed
  1. Zheng Y, Vanderzalm J, Hartog N, Escalante EF, Stefan C. The 21st century water quality challenges for managed aquifer recharge: towards a risk-based regulatory approach. Hydrogeol J. 2023;31(1):31–34. https://doi.org/10.1007/s 10040-022-02543-z.
  2. Sadegh H, Ali GA, Nia HJ, Mahmoodi Z. Nanomaterial surface modifications for enhancement of the pollutant adsorption from wastewater: adsorption of nanomaterials.  Nanotechnology applications in environmental engineering: IGI Global Scientific Publishing; 2019;143-70. https://doi. org/10.4018/978-1-5225-5745-6.ch007.
  3. Singh V. Environmental and Health Consequences of Distillery Wastewater and Ways to Tackle: A Review. IJRAH. 2021;1:41–49. https://doi.org/10.55544/ijrah.1.1.42.
  4. Kayabasi Y, Erbas O. Methylene blue and its importance in medicine. Florence Nightingale J Med. 2020;6. https://doi. org/10.5606/fng.btd.2020.25035.
  5. Batchelor RH, Dief EM, Bonham AJ, Gooding JJ. A Review of Methylene Blue’s Interactions with DNA and Their Relevance for DNA-Based Sensors. ACS Sens. 2025;10(6): 3854–3877. https://doi.org/10.1021/acssensors. 5c00336.
  6. Imad HU, Mahar RB, Pathan AA, Khatri A. Exploring effective methods for indigo dye removal and recovery from textile effluent: a sustainable approach towards resource recovery. IJEST. 2025;22(4):2769–2792. https://doi.org/10. 1007/ s13762-024-05888-y.
  7. Zaharia C, Musteret C-P, Afrasinei M-A. The Use of Coagulation–Flocculation for Industrial Colored Wastewater Treatment—(I) The Application of Hybrid Materials. Appl Sci. 2024;14(5):2184. https://doi.org/10.3390/app14052184.
  8. Hossen A, Chowdhury T, Mondal I. Purification of textile dye-contained wastewater by three alternative promising techniques: Adsorption, Biodegradation and Advanced Oxidation Processes (AOPs)-A review. JTEFT. 2022; 8(3): 96–8. http://dx.doi.org/10.15406/jteft.2022.08. 00306.
  9. Meez E, Rahdar A, Kyzas GZ. Sawdust for the removal of heavy metals from water: a review. Molecules. 2021; 26(14):4318. https://doi.org/10.3390/molecules 26144318.
  10. Efeovbokhan VE, Alagbe EE, Odika B, Babalola R, Oladimeji TE, Abatan OG, Yusuf EO, editors. Preparation and characterization of activated carbon from plantain peel and coconut shell using biological activators. J Phys: Conference Series; 2019: IOP Publishing. https://10.1088/ 1742-6596/1378/3/032035.
  11. Yim Y-J, Kim B-J. Preparation and Characterization of Activated Carbon/Polymer Composites: A Review. Polymers. 2023;15(16):3472. https://doi.org/10.3390/ polym 15163472.
  12. Ozcakir G. Carbon Fiber and Its Composites: Synthesis, Properties, Applications. Sinop Uni J Nat Sci. 2024;9. https://doi.org/10.33484/sinopfbd.1393364.
  13. Eyni Gavabari S, Goudarzi A, Shahrousvand M, Asfaram A. Preparation of novel polyurethane/activated carbon/cellulose nano-whisker nanocomposite film as an efficient adsorbent for the removal of methylene blue and basic violet 16 dyes from wastewater. Sep Purif Technol. 2024;330:125285. https://doi.org/10.1016/j.seppur.2023.125285.
  14. Behnezhad M, Goodarzi M, Baniasadi H. Fabrication and characterization of polyvinyl alcohol/carboxymethyl cellulose/titanium dioxide degradable composite films: an RSM study. Mater Res Express. 2020;6(12):125548. https://doi.org/10.1088/2053-1591/ab69cb.
  15. Ji T, Zhang R, Dong X, Sameen DE, Ahmed S, Li S, Liu Y. Effects of ultrasonication time on the properties of polyvinyl alcohol/sodium carboxymethyl cellulose/nano-ZnO/ multi-layer graphene nanoplatelet composite films. Nanomaterials. 2020;10(9):1797. https://doi.org/10.3390/nano10091797.
  16. Paria A, Rai VK. The fate of carboxymethyl cellulose as a polymer of pharmaceutical importance. Biol Sci. 2022; 2(2): 204–215. https://doi.org/10.55006/biolsciences.2022.2204.
  17. Nasrullah A, Saad B, Bhat A, Khan AS, Danish M, Isa MH, Naeem A. Mangosteen peel waste as a sustainable precursor for high surface area mesoporous activated carbon: Characterization and application for methylene blue removal. J Clean Prod. 2019;211:1190–200. https://doi.org/ 10. 1016/ j. jclepro.2018.11.094.
  18. Bilgi M, Ugraskan V, Isik B. Biosorption studies of methylene blue dye using NaOH-treated Aspergillus niger-filled sodium alginate microbeads. Chem Eng Commun. 2023;210(9):1405–1419. https://doi.org/10.1080/00986445. 2022.2103685.
  19. Alver E, Metin AÜ, Brouers F. Methylene blue adsorption on magnetic alginate/rice husk bio-composite. Int J Biol Macro-mol. 2020;154:104-113. https://doi.org/10.1016/j. ijbiomac. 2020.02.330.
  20. Zhang M, Zhang G, Lu X, Abuduwaili A, Di T, Liao X, Sun D. Synthesis of novel high-performance adsorbent based on modified polyurethane/polysaccharidesfor wastewater treatment. J Polym Environ. 2024;32(6):2818–2834. https:// doi. org/10.1007/s10924-024-03249-x.
  21. Lawtae P, Tangsathitkulchai C. The use of high surface area mesoporous-activated carbon from longan seed biomass for increasing capacity and kinetics of methylene blue adsorption from aqueous solution. Molecules. 2021; 26(21):6521. https://doi.org/10.3390/molecules26216521.
  22. Negarestani M, Tavassoli S, Reisi S, Beigi N, Mollahosseini A, Hosseinzadeh M, Kheradmand A. Preparation of sisal fiber/polyaniline/bio-surfactant rhamnolipid-layered double hydroxide nanocomposite for water decolorization: kinetic, equilibrium, and thermodynamic studies. Sci Rep. 2023; 13(1):11341. https://doi.org/10.1038/s41598-023-38511-0.
  23. 23.           Mekky A, El-Masry M, Khalifa R, Omer A, Tamer T, Khan Z, Gouda M, Eldin MM. Removal of methylene blue dye from synthetic aqueous solutions using dimethyl-glyoxime modified amberlite IRA-420: kinetic, equilibrium and thermodynamic studies. Desalin Water Treat. 2020;181: 399–411. https://doi.org/10.5004/dwt.2020. 25097.
  24. Khuluk RH, Rahmat A, Buhani B, Suharso S. Removal of methylene blue by adsorption onto activated carbon from coconut shell (Cocous Nucifera L.). IJoST. 2019;4(2):229–40. http://dx.doi.org/10.17509/ijost.v4i2.18179.
  25. Misran E, Bani O, Situmeang E, Purba A, editors. Removal efficiency of methylene blue using activated carbon from waste banana stem: Study on pH influence. IOP conference series: earth and environmental science; 2018: IOP Publishing. https://10.1088/1755-1315/122/1/012085.
  26. Zhao W, Chi H, Zhang S, Zhang X, Li T. One-pot synthesis of cellulose/MXene/PVA foam for efficient methylene blue removal. Molecules. 2022;27(13):4243. https://doi.org/10. 3390/ molecules27134243.
  27. Xie W, Bao Q, Liu Y, Wen H, Wang Q. Hydrogen bond association to prepare flame retardant polyvinyl alcohol film with high performance. ACS Appl Mater Interfaces. 2021; 13(4):5508–5517. https://doi.org/10.1021/acsami. 0c19093.
  28. Esvandi Z, Foroutan R, Mirjalili M, Sorial GA, Ramavandi B. Physicochemical behavior of Penaeuse semisulcatuse chitin for Pb and Cd removal from aqueous environment. J Polym Environ. 2019;27(2):263–74. https://doi.org/10.1007/ s10924-018-1345-x.
  29. Foroutan R, Ahmadlouydarab M, Ramavandi B, Mohammadi R. Studying the physicochemical charac-teristics and metals adsorptive behavior of CMC-g-HAp /Fe3O4 nanobio-composite. J Enviro Chem Eng. 2018; 6(5): 6049–58. https://doi.org/10.1016/j.jece.2018.09.030.
  30. Huang Y, Wang W, Feng Q, Dong F. Preparation of magnetic clinoptilolite/CoFe2O4 composites for removal of Sr2+ from aqueous solutions: kinetic, equilibrium, and thermodynamic studies. J Saudi Chem Soc. 2017;21(1):58–66. https://doi.org/10.1016/j.jscs.2013.09.005.
  31. Wang Y, Zhang Y, Li S, Zhong W, Wei W. Enhanced methylene blue adsorption onto activated reed-derived biochar by tannic acid. J Mol Liq. 2018;268:658–66. https://doi.org/10.1016/j.molliq.2018.07.085.
  32. Shakoor S, Nasar A. Adsorptive treatment of hazardous methylene blue dye from artificially contaminated water using cucumis sativus peel waste as a low-cost adsorbent. Groundw Sustain Dev. 2017;5:152–9. https://doi.org/10. 1016/j.gsd.2017.06.005.
  33. Chaari I, Medhioub M, Jamoussi F, Hamzaoui AH. Acid-treated clay materials (Southwestern Tunisia) for removing sodium leuco-vat dye : Characterization, adsorption study and activation mechanism. J Mol Struct. 2021;1223:128944. https://doi.org/10.1016/j.molstruc.2020.128944.
  34. Nanthamathee C, Dechatiwongse P. Kinetic and thermo-dynamic studies of neutral dye removal from water using zirconium metal-organic framework analogues. Mater Chem Phys. 2021;258:123924. https://doi.org/10.1016/j.mat-chemphys. 2020.123924.
  35. Moosavi S, Lai CW, Gan S, Zamiri G, Akbarzadeh Pivehzhani O, Johan MR. Application of efficient magnetic particles and activated carbon for dye removal from wastewater. ACS omega. 2020;5(33):20684–97. https://doi. org/10.1021/acsomega.0c01905.
  36. Jawad AH, Rangabhashiyam S, Abdulhameed AS, Syed-Hassan SSA, ALOthman ZA, Wilson LD. Process optimization and adsorptive mechanism for reactive blue 19 dye by magnetic crosslinked chitosan/MgO/Fe3O4 biocom-posite. J Polym Environ. 2022;30(7):2759–73. https://doi. org/10.1007/s10924-022-02382-9.
  37. Lin C-R, Ivanova OS, Petrov DA, Sokolov AE, Chen Y-Z, Gerasimova MA, Zharkov SM, Tseng Y-T, Shestakov NP, Edelman IS. Amino-functionalized Fe3O4@ SiO2 core-shell magnetic nanoparticles for dye adsorption. Nanomaterials. 2021;11(9):2371. https://doi.org/10.3390/nano11092371.
  38. Nguyen TA. Revolutionizing Lead (II) Ion Removal from Water: Eco-Friendly Composite Film with Graphene Oxide and Bacterial Cellulose. Trends Sci. 2025;22(5):9589. https://doi.org/10.48048/tis.2025.9589.
  39. Dwivedi P, Rathore AK, Srivastava D, R P V. Synthesis of PVA–MWCNTs–UMCNOs–starch crosslinked nanocom-posite biodegradable films for the removal of methylene blue and Congo red dyes from wastewater. J Appl Polym Sci. 2024;141. https://doi.org/10.1002/app.56053.
  40. Hemdan M, Ragab A, Elyan S, Taher M, Moubark M. Eco-friendly Activated Carbon Thin Film-Zeolitic Imidazolate Framework-8 (ACTF@ZIF-8) Nanocomposite for Efficient Methylene Blue Removal: Synthesis, Characterization, and Adsorption Performance. J Clust Sci. 2024;36(1):2. https://doi.org/10.1007/s10876-024-02730-w.
  41. Widiyastuti W, Fahrudin Rois M, Suari NMIP, Setyawan H. Activated carbon nanofibers derived from coconut shell charcoal for dye removal application. Adv Powder Technol. 2020; 31(8):3267–73. https://doi.org/10.1016/j.apt.2020. 06. 012.