سنتز یک ماده رنگزای آلی برپایه ایندولین برای کاربرد در سلول‌های خورشیدی حساس شده به مواد رنگزا

نوع مقاله : مقاله پژوهشی

نویسندگان

1 گروه پژوهشی مواد رنگزای آلی، پژوهشگاه رنگ، تهران، ایران، صندوق‌پستی: 654-167654

2 دانشکده فیزیک، دانشگاه صنعتی شاهرود، شاهرود، ایران، صندوق‌پستی: 316-36155

10.30509/jcst.2025.167615.1267

چکیده

سلول­های خورشیدی حساس شده به مواد رنگزا، یک فناوری جدید برای تولید انرژی الکتریکی زیست سازگار است. مواد رنگزا در این فناوری، نقش تولید الکترون را با دریافت نور فرودی دارند. در این مطالعه یک ماده رنگزای آلی با استفاده از کربازول به عنوان ماده شروع کننده تهیه شد. هیدروژن بازی کربازول با ایندیگو جایگزین و دو گروه استیل آمین بر روی حلقه‌های فنیل کربازول قرار داده شد. مواد رنگزا برای تایید ساختار شیمیایی، توسط روش‌های دستگاهی مورد مطالعه قرار گرفت. ویژگی­های جذبی ماده رنگزای سنتز شده در سه حلال اتانل و استونیتریل (حلال‌های قطبی) و بنزن (حلال غیرقطبی) بررسی شد. مطالعه فرایند لایه نشانی و تغییر بیشینه جذب، در حلال اتانل و سطح نیمه‌رسانا دی­اکسیدتیتانیم انجام شد. امکان­سنجی کاربرد ماده رنگزا و انتقال الکترون تهییج یافته و پرشدن حفره توسط روش ولت‌سنجی چرخه­ای ارزیابی شد. در نهایت سلول خورشیدی با استفاده از الکترود مقابل پلاتین شده و الکترولیت زوج اکسایش - کاهش ید مجتمع شد. بازده دستگاه و مقدار طول عمر الکترون تهییج یافته به ترتیب در حدود 17/6 درصد و 02/29 میلی­ثانیه به دست آمد.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Synthesis of an Organic Dye Based on Indoline for Use in Dye-Sensitized Solar Cells

نویسندگان [English]

  • M. Hosseinnezhas 1
  • K. Gharanjig 1
  • M. Fathi 2
1 Department of Organic Colorants, Institute for Color Science and Technology, P.O. Box: 16765-654, Tehran, Iran
2 Department of Physics, Shahrood University of Technology, P.O. Box 36155-316, Shahrood, Iran
چکیده [English]

Dye-sensitized solar cells (DSSCs) are a new technology for producing sustainable electrical energy. Dyes in this technology play the role of electron generation upon receiving incident light. In this study, an organic dye was prepared using carbazole as the starting material. The hydrogen base of carbazole was replaced with indigo and two acetylamine groups were placed on the phenylcarbazole rings. The chemical structure of the dyes was studied by analytical methods to confirm the chemical structure. The absorption properties of the synthesized dye were investigated in three solvents: ethanol and acetonitrile (polar solvents) and benzene (non-polar solvent). The study of the deposition process and the change in the absorption maximum was conducted in an ethanol solvent and on the surface of titanium dioxide semiconductor. The feasibility of using the dye and the excited electron transfer and hole filling were evaluated by cyclic voltammetry. Finally, the DSSCs were assembled using a platinum counter electrode and iodine redox couple electrolyte. The device efficiency and the excited electron lifetime were found to be about 17.6% and 29.02 milliseconds, respectively.

کلیدواژه‌ها [English]

  • Dye
  • sensitized solar cells Indoline Indigo Efficiency Titanium dioxide
  1. Qamar S, Ela SE. Dye-sensitized solar cells (DSSC): Principles, materials and working mechanism. Cuuent Optin Colloid Inter Sci. 2024; 74:101871. https://doi.or g/10.1016/j. cocis.2024.101871.
  2. Hosseinnezhad M, Gharanjig K, Nasiri S, Fathi M. Study of the presence of thioindigo in photosensitizers based on phenothiazine: Synthesis and photovoltaic evaluation in DSSCs. Synth Metal. 2025; 312: 117885. https://doi.org/10. 1016/j.synthmet.2025.117885.
  3. Saud PS, Bist A, Kim AA, Yousef A, Abutaleb A, Park M, Park SJ, Pant B. Dye-sensitized solar cells: Fundamentals, recent progress, and Optoelectrical properties improvement strategies. Opt Mater. 2024; 150: 115242. https://doi.org/10. 1016/ j.optmat.2024.115242.
  4. Hosseinnezhad M, Nasiri S, Nutalapati V, Gharanjig K, Arabi AM. A review of the application of organic dyes based on naphthalimide in optical and electrical devices. Prog Color Colorant Coat. 2024; 17(4):417-433. https://doi.org/10.30509/ pccc.2024.167247.1267.
  5. Sasikumar R, Thirumalaisamy S, Kim B, Hwang B. Dye-sensitized solar cells: Insights and research divergence towards alternatives. Renew Sustain Energy Rev. 2024; 199:114549. https://doi.org/10.1016/j.rser.2024.114549.
  6. Sebak MA, Aladim AK, Gami F, Mostafa MM, Shahin OR, Abdelhamid Shahat M. Regulating carrier transfer and performance in dye-sensitized solar cells (DSSCS) using gamma-irradiated chitosan@pva@al2o3 nanocomposites as a counter electrode. Mater Res Bull. 2025; 192: 113593. https://doi.org/10.1016/j.materresbull.2025.113593.
  7. Iman RN, Youna M, Harrabi K, Mekki A. A comprehensive review on advancements and optimization strategies in dye-sensitized solar cells: Components, characterization, stability and efficiency enhancement. Inorg Chem Commun. 2024; 165: 112488. https://doi.org/10.1016/j.inoche.2024.112488.
  8. Hosseinnezhad M, Nasiri S, Nutalapati V, Gharanjig K, Arabi A. Investigation of using amine and acetylamine functional units on naphthalimide dyes for photovoltaic devices. Pigm Resin Technol. 2025;54(4):589-598. https://doi.org/10.1108/ PRT-03-2024-0030.
  9. Iswarya S, Dharshini A, Vithiya BSM, Prasad TAA. Evolving smart homes to exploring space, dye-sensitized solar cells (DSSC) as a sustainable energy model for the future world-A review. Next Energy. 2025;8:100328. https://doi.org/10. 1016/j.nxener.2025.100328.
  10. Han J, Song P, Ma F, Li Y. Optical absorption spectroscopy and electronic properties of D-A dyes and chlorophyll derivatives for co-sensitization in DSSCs. Acta Part A: Mol Biomol Spect. 2025;326:125160. https://doi.org/10.1016/j.saa. 2024.125160
  11. Verma P, Chetti P. Investigation of the influence of donor and internal acceptor on photovoltaic parameters in D-A1-π-A Dye sensitizers for efficient DSSCs. Chem Phys Impact. 2025; 10:100789. https://doi.org/10.1016/j.chphi.2024.100 789.
  12. Devarajan N, Naik P, Gorle DB. Exploring the potential of heterocyclic carbazole-derived dyes for DSSCs. J Photochem Photobiol A Chem. 2025; 462:116177. https://doi.org/10. 1016/j.jphotochem.2024.116177
  13. Shelke R, Walke P, Khond V, Nirwan. Performance degradation of dye sensitized solar cells with cobalt sulphate and graphite as a counter electrode. Materialstoday. 2024; In Press. https://doi.org/10.1016/j.matpr.2024.05.091.
  14. Hosseinnezhad M, Gharanjig K, Ghahari M, Nasiri S. Investigation of Photo-electrode and Counter Electrode Effect on DSSCs Based on Indoline Dyes. Prog Color Colorant Coat. 2024; 17(4): 121-132. https://doi.org/10.30509/pccc.2023. 167159.1230.
  15. Morja MI, Chikhalia KH. Transition metal-free synthesis and functionalization of phenothiazines. Tetrahedron. 2023; 145: 133618. https://doi.org/10.1016/j.tet.2023.133618
  16. Mocquard J, Lamer AL, Fabre PL, Mathiev C, Chastrette C, Vitra A, Vandenbossche V. Indigo dyeing from Isatis tinctoria L.: From medieval to modern use. Dye Pigm. 2022; 207: 110675. https://doi.org/10.1016/j.dyepig.2022.110675
  17. Jaszczyszyn A, Gasiorowski K, Swiatek P, Malinka W, Boczula KC, Petrus J, Matusewicz BC. Chemical structure of phenothiazines and their biological activity. Pharmacol Rep. 2012; 64:16-23, https://doi.org/10.1016/S1734-1140(12) 70726-0.
  18. Homocianu M. Exploring solvatochromism: A comprehensive analysis of research data. Microchem J. 2024; 198:110166. https://doi.org/10.1016/j.microc.2024.110166.
  19. Conradie J. Effective dyes for DSSCs–Important experimental and calculated parameters. Next Energy. 2024; 13:100282. https://doi.org/10.1016/j.nexus.2024.100282.
  20. Mohammadian-Sarcheshmeh H, Arazi R, Mazloum Ardakani M. Application of bifunctional photoanode materials in DSSCs: A review. Renew Sustain Energy Rev. 2020; 134: 110249. https://doi.org/10.1016/j.rser.2020.110249.
  21. Bakhshayesh AM, Farajisafiloo N. Efficient dye-sensitised solar cell based on uniform In-doped TiO2 spherical particles. Appl Phys A.2015;120:199-206. https://doi.org/10.1007/ s00339- 015-9150-z
  22. Gong J, Sumathy K, Qiao Q, Zhou Z. Review on dye-sensitized solar cells (DSSCs): Advanced techniques and research trends. Renew Sustain Energy Rev. 2017; 234: 246. https://doi.org/10.1016/j.rser.2016.09.097.
  23. Antu NR, Hasan W, Hasanuzzaman M, Islam M. Challenges and prospects of semi transparent dye-sensitized solar cells for real-world applications: A review. Curr Opin Colloid Interface Sci. 2025; 77:101907. https://doi.org/10.1016/j. cocis.2025.101907.
  24. Karim NA, Mehmood U, Zahid HF, Asif T. Nanostructured photoanode and counter electrode materials for efficient dye-sensitized solar cells (DSSCs). Sol Energy, 2019; 185:165-188. https://doi.org/10.1016/j.solener.2019.04.057
  25. Mazloum-Ardakani M, Arazi R, Haghshenas M, Tamaddon F, Alizadeh M.Synthesis of 2-amino-4-(4-(methylamino) phenyl)-6-phenylnicotinonitrile as anew additive for the passivation of the TiO2 surface and retarding recombinationin dye-sensitized solar cells. Electrochim Acta. 2018;266: 452-459. https://doi.org/10.1016/j.electacta.2018.02.011.
  26. Yashwantrao G, Saha S. Perspective on the rational design strategies of quinoxaline derived organic sensitizers for dye-sensitized solar cells (DSSC). Dye Pigm. 2022; 199:110093. https://doi.org/10.1016/j.dyepig.2022.110093.
  27. Rasikumar R, Thirumalaisamy S, Kim B, Hwang B. Dye-sensitized solar cells: Insights and research divergence towards alternatives. Renew Sustain Energy Rev. 2024; 199:114549. https://doi.org/10.1016/j.rser.2024.114549.
  28. Babar F, Mehmood U, Asghar H, Hassan Mehdi M, Khan AH, Khalid H, Huda N, Fatima Z. Nanostructured photoanode materials and their deposition methods for efficient and economical third generation dye-sensitized solar cells: A comprehensive review. Renew. Sustain. Energy Rev. 2020; 129:109919. https://doi.org/10.1016/j.rser.2020.109919.
  29. Alyahya F, Wazzan N. Systematic molecular engineering of π-spacer in Indoline-based dyes with D-A'-π-A framework to enhance the intramolecular charge transfer and photovoltaic properties in DSSC and NLO applications: DFT insight. Chem. Phys. 2025; 594:11266. https://doi.org/10.1016/j. chemphys. 2025.112666.
  30. Gezgin M, Arslan BS, Avci D, Nebioglu M, Sisman I. Novel D–π–A dye as a co-sensitizer of indoline and benzothiadiazole dyes to enhance photovoltaic performance of dye-sensitized solar cells. J Photochem Photobiol A Chem. 2025; 458: 115977. https://doi.org/10.1016/j.jphotochem.2024.115977
  31. Subalakshmi K, Ashok Kumar A, Paul OP, Saraswathy S, Pandurangan A, Senthilselvan J. Platinum-free metal sulfide counter electrodes for DSSC applications: Structural, electrochemical and power conversion efficiency analyses. Sol Energy. 2019; 193: 507-518. https://doi.org/10. 1016/j. solener.2019.09.075.
  32. Azahar AA, Nurhafizah MD. A short review on surpassing Pt with alternative counter electrodes and GQD enhancement in counter electrode. Synth Metal. 2024; 307: 117685. https://doi.org/10.1016/j.synthmet.2024.117685.
  33. Guo F, Narukullapati BK, Mohammed KJ, Altimari US, Abed AM, Yan Z, Ahmad N, Dwijendra NKA, Sivaraman R, Abdulkadhim AH. New material for addressing charge transport issue in DSSCs: Composite WS2/MoS2 high porosity counter electrodes. Sol. Energy. 2022; 243: 62-69. https://doi. org/10.1016/j.solener.2022.07.020.
  34. Ayaz M, Hijji M, Alatawi AS, Namazi MA, Mohamed Ershath MI. Enhancing photovoltaic performance in dye-sensitized solar cells using nanostructured NiS/MoS2 composite counter electrodes. Mater Sci Semicounduct Proc. 2024;173:108172. https://doi.org/10.1016/j.mssp.2024.1081 72.
  35. Norouzibazaz M, Gholivand MB, Taherpour AA. Design and construction of MoS2/Ni3S2 nanosheets decorated on multi-walled carbon nanotubes as a sustainable counter electrode for dye-sensitized solar cells: An experimental and computational investigation. J Phys Chem Solid. 2024; 193: 112168. https://doi.org/10.1016/j.jpcs.2024.112168.
  36. Sunahara K, Ogawa J, Mori S. A method to measure electron lifetime in dye-sensitized solar cells: Stepped current induced measurement of cell voltage in the dark. Electrochem. Commun. 2011; 13(12): 1420-1422. https://doi.org/10.1016/j. elecom.2011.09.005.
  37. Bisquert J, Santiago FF, Mora-Sero I, Belmonte G, Gimenez S. Electron lifetime in dye-sensitized solar cells: theory and interpretation of measurements. J Phys Chem. 2019; 446(1): 136777. https://doi.org/10.1021/jp9037649.
  38. Bharwal Ak, Manceriu L, Olivien C, Mahmmoud A, Iojoiu C, Toupance T, Ruiz CM, Pasquinelli M, Duche D, Simon JJ, Henrist C, Alloin F. Remarkable 8.3% efficiency and extended electron lifetime towards highly stable semi-transparent iodine-free DSSCs by mitigating the in-situ triiodide generation. Chem Eng J. 2022; 446(1): 136777. https://doi.org/10.1016/j.cej.2022.136777.
  39. Gezgin M, Arslan BS, Auc D, Nebioglu M, Sisman I. Novel D–π–A dye as a co-sensitizer of indoline and benzothiadiazole dyes to enhance photovoltaic performance of dye-sensitized solar cells. J Photochem Photobiol A: Chem. 2025; 458: 115977. https://doi.org/10.1016/j.jphotochem.2024.115977.
  40. Arslan BS, Ozturk N, Gezgin M, Sevindik S, Yilan D, Kumbasar RA, Nebioglu M, Sisman I. Optimization of fabrication parameters for efficient dye-sensitized solar cells based on dyes containing benzothiadiazole, indoline, and their co-sensitization. Electrochimica Acta. 2025; 458:142523. https://doi.org/10.1016/j.electacta.2023.142523.
  41. Verma P, Chetti P. Investigation of the influence of donor and internal acceptor on photovoltaic parameters in D-A1-π-A Dye sensitizers for efficient DSSCs. Chem Phys Impact. 2025; 10:100789. https://doi.org/10.1016/j.chphi.2024.100 789.
  42. Al-Horaibi SA, Asiri AM, El-Shishtawy RM, Gaikwad ST. Indoline and benzothiazole-based squaraine dye-sensitized solar cells containing bis-pendent sulfonate groups: Synthesis, characterization and solar cell performance. J Mol Struct. 2024; 1195: 591-597. https://doi.org/10.1016/j.molstruc. 2019.05.068