کاربرد کربن متخلخل در حذف رنگزای دیسپرس قرمز 167: بررسی سینتیکی و ترمودینامیکی فرایند جذب

نوع مقاله : مقاله پژوهشی

نویسندگان

1 گروه آموزشی صنایع کاربردی، دانشگاه ملی مهارت، تهران، ایران، صندوق‌پستی: 1435763811

2 گروه آموزشی هنر، دانشگاه ملی مهارت، تهران، ایران، صندوق‌پستی: 1435763811

10.30509/jcst.2025.167594.1264

چکیده

در این تحقیق، از پوست گردو به‌عنوان ماده اولیه برای سنتز کربن فعال به روش شیمیایی با استفاده از فسفریک اسید استفاده شده است. هدف اصلی، بررسی توانایی این جاذب طبیعی در حذف رنگزای دیسپرس قرمز 167 از پساب‌های نساجی است. خصوصیات فیزیکی و شیمیایی جاذب با استفاده از آزمون‌های BET، SEM و عنصری بررسی شدند. تأثیر عوامل مختلفی مانند pH، زمان تماس، غلظت اولیه رنگزا و دما بر روی فرایند جذب مطالعه شد. ایزوترم‌های جذب، به همراه مدل‌های سینتیکی شبه مرتبه اول و دوم، برای مدل‌سازی داده‌های تجربی استفاده گردید. نتایج نشان دادند که جاذب سنتز شده دارای سطح ویژه بالا و ساختار متخلخل مؤثر در حذف رنگزا است و مدل شبه مرتبه دوم، بهترین برازش را با داده‌ها داشته است. مطالعات ترمودینامیکی نشان داد که فرایند جذب گرماگیر و به صورت خودبه‌خودی است. گرمای ایزوستریک جذب در پوشش نسبتاً پایین از ماده جاذب، برای نمونه سنتز شده برابر با 4/54 کیلوژول بر مول گزارش شد، که نشان‌دهنده ویژگی‌های فیزیکی-شیمیایی و ناهمگنی سطح کربن فعال سنتز شده است. 

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Application of Porous Carbon in the Removal of Disperse Red 167 dye: Kinetic and Thermodynamic Study of the Adsorption Process

نویسندگان [English]

  • Soodabeh Khalili 1
  • Nasim Hasani 2
  • Zoya Salahshoor 2
1 Department of Applied Industries engineering, Technical and Vocational University (TVU), P.O. Box: 1435763811, Tehran, Iran
2 Department of Arts, Technical and Vocational University (TVU), P.O. Box: 1435763811, Tehran, Iran
چکیده [English]

In this research, walnut shell was utilized as a raw material for the production of activated carbon through chemical synthesis using phosphoric acid. The main objective was to explore the efficacy of this natural adsorbent in the extraction of Disperse Red 167 (DR167) dye from textile wastewater. The physical and chemical properties of the adsorbent were examined using BET, SEM, and elemental analysis methods. Several factors, including pH, contact duration, initial dye concentration, and temperature, were analyzed for their effect on the adsorption process. Both adsorption isotherms and pseudo-first-order as well as pseudo-second-order kinetic models were employed to interpret the experimental data. The findings demonstrated that the produced adsorbent has a high specific surface area and a porous configuration, making it effective in dye removal. The pseudo-second-order kinetic model yielded the best correlation with the data. Thermodynamic investigations indicated that the adsorption process is endothermic and occurs spontaneously. The isosteric heat of adsorption at lower levels of coverage for the synthesized sample was measured at 54.4 kJ/mol, reflecting the physicochemical characteristics and surface variability of the activated carbon.

کلیدواژه‌ها [English]

  • Adsorption
  • Activated Carbon
  • Disperse Red 167
  • Walnut Shell
  1. Lin J, Ye W, Xie M, Seo DH, Luo J, Wan Y, Van der Bruggen B. Environmental impacts and remediation of dye-containing wastewater. Nature Reviews Earth Environ. 2023; 4(11):785-803. https://doi.org/10.1038/s43017-023-00489-8.
  2. Khan S, Noor T, Iqbal N and Yaqoob L. Photocatalytic dye degradation from textile wastewater: a review. ACS omega, 2024;9(20),21751-21767. https://doi.org/10.1021/acsomega. 4c00887.
  3. Tan KB, Vakili M, Horri BA, Poh PE, Abdullah AZ, Salamatinia B. Adsorption of dyes by nanomaterials: Recent developments and adsorption mechanisms, Sep. Purif. Technol. 2015;150:229-242. https://doi.org/10.1016/j.seppur. 2015. 07.009.
  4. N. Sivarajasekar, R. Baskar, T. Ragu, K. Sarika, N. Preethi, T. Radhika, Biosorption studies on waste cotton seed for cationic dyes sequestration: equilibrium and thermodynamics, Appl. Water Sci. 2017;7:1987-1995. https://doi.org/10.1007/s13201-016-0379-2.
  5. Sivarajasekar N, Baskar R, Biosorption of basic violet 10 onto activated Journal Pre-proof Journal Pre-proof 16 Gossypium hirsutum seeds: Batch and fixed-bed column studies, Chinese J Chem Eng. 2015;23:1610-1619. https://doi.org/10.1016/j. cjche.2015.08.029.
  6. Fahira N, Gareso PL, Tahir D. Exploring wood-based strategies for dye removal: A comprehensive literature review. Bioresource Technology Reports. 2025, 102048. https://doi. org/10.1016/j.biteb.2025.102048.
  7. Rabeie B, Mahmoodi NM (2024) Heterogeneous MIL-88A on MIL-88B hybrid: a promising eco-friendly hybrid from green synthesis to dual application (adsorption and photocatalysis) in tetracycline and dyes removal. J Colloid Interface Sci 654:495–522. https://doi.org/10.1016/j.jcis.2023.10.060
  8. Iqbal MA, Akram S, Lal B, Hassan SU, Ashraf R, Kezembayeva G, et al. Advanced photocatalysis as a viable and sustainable wastewater treatment process: A comprehensive review. Environ Res. (2024)253; 118947. https://doi.org/10. 1016/j.envres.2024.118947
  9. Cui T, Wang X, Chen Y, Chen Y, Fu B, Tu Y. Reverse Osmosis coupling Multi-Catalytic Ozonation (RO-MCO) in treating printing and dyeing wastewater and membrane concentrate: Removal performance and mechanism. Water Resources and Industry. 2023 Dec 1;30:100217. https://doi. org/10.1016/j.wri.2023.100217
  10. Signorelli SC, Costa JM, de Almeida Neto AF. Electrocoagulation-flotation for orange II dye removal: Kinetics, costs, and process variables effects. Journal of Environmental Chemical Engineering. 2021 Oct 1;9(5):106157. https://doi.org/10.1016/j.jece.2021.106157
  11. Naderahmadian A, Eftekhari-Sis B, Jafari H, Zirak M, Padervand M, Mahmoudi G, Samadi M. Cellulose nanofibers decorated with SiO2 nanoparticles: Green adsorbents for removal of cationic and anionic dyes; kinetics, isotherms, and thermodynamic studies. International Journal of Biological Macromolecules. 2023 Aug 30;247:125753. https://doi. org/10.1016/j.ijbiomac.2023.125753
  12. Alatawi RA. Electrospun nanofiber chitosan/polyvinyl alcohol loaded with metal organic framework nanofiber for efficient adsorption and removal of industrial dyes from waste water: Adsorption isotherm, kinetic, thermodynamic, and optimization via Box-Behnken design. International Journal of Biological Macromolecules. 2025 Jan 20:140086. .https://doi. org/10.1016/j.ijbiomac.2025.140086
  13. Date M, Dipika J. Dyes and heavy metals: removal, recovery and wastewater reuse—a review. Sustain Water Resour Manag. 2024;10. https://doi.org/10.1007/s40899-024-01073-8
  14. Zhang J, Duan C, Huang X, Meng, M, Li Y, Huang H, Tang X. A review on research progress and prospects of agricultural waste-based activated carbon: preparation, application, and source of raw materials. J Mater Sci. 2024;59(13): 5271-5292. https://doi.org/10. 1007/s10853-024-09526-3.
  15. Husien S, El-taweel RM, Salim AI, Fahim IS, Said LA, Radwan AG. Review of activated carbon adsorbent material for textile dyes removal: Preparation, and modelling. Current Res Green Sustainable Chem. 2022;5:100325. https://doi. org/10.1016/j.crgsc.2022.100325.
  16. Romero-Hernandez JJ, Paredes-Laverde M, Silva-Agredo J, Mercado DF, Ávila-Torres Y, Torres-Palma RA. Pharmaceutical adsorption on NaOH-treated rice husk-based activated carbons: Kinetics, thermodynamics, and mechanisms. J Cleaner Prod. 2024;434:139935. https://doi. org/10.1016/j.jclepro.2023.139935.
  17. Lei J, Wu HW, Fu SQ, Li CX. Low-cost coconut petiole fiber-based adsorbent material for cyclic adsorption of Cu (II) ions in aqueous media. React Funct Polym. 2025;215: 106354 https://doi.org/10.1016/j.reactfunctpolym.2025.106354.
  18. Lawal A, Yusof N A, Abdullah AH, Wahid, MH, Ismail S, Abd Rahman SF. Synthesizing nanoporous carbon from palm kernel shell as a newly designed green absorbent for removing mercury. Chem Pap. 2024;78(3), 1959-1974. https://doi.org/ 10.1007/s11696-023-03219-y.
  19. Khalil A, Mangwandi C, Salem MA, Ragab S, El Nemr A. Orange peel magnetic activated carbon for removal of acid orange 7 dye from water. Scientific Reports. 2024;14(1):119. https://doi.org/10.1038/s41598-023-50273-3.
  20. Kamaraj M, Nithya TG, Shyamalagowri S, Aravind J, Mythili R (2022) Activated carbon derived from almond tree dry leaves waste for enhanced multi dye removal from aqueous solutions. Mater Lett 308:131216. https://doi.org/10.1016/j .matlet.2021.131216.
  21. Milani LAP, Zanette ACC, Dauzacher NBRO, Crippa DD, Possenti GVB, Battisti R. Sustainable Bio‐Adsorbents From Banana Post‐Harvest Agricultural Residues: Kinetics, Equilibrium, and Mechanism Prospection of Methylene Blue Dye Adsorption. CLEAN–Soil, Air, Water. 2025;53(1), e202400020. https://doi.org/10.1002/clen.202400020.
  22. Abid LH, Mussa ZH, Deyab IF, Al-Ameer LR, Al-Saedi HFS, Al-Qaim FF, Yaseen ZM. Walnut Shell as a bio-activated carbon for elimination of malachite green from its aqueous solution: Adsorption isotherms, kinetics and thermodynamic studies. Results Chem. 2025;14: 102124. https://doi.org/ 10.1016/j.jaap.2025.107315.
  23. Smedt JD, Arauzo, PJ, Ronsse F. Optimisation of activated carbon from fruit stones and shells derived via molten salt activation for dye removal. Bioresour Technol. 2025; 132040. https://doi.org/10.1016/j.biortech.2025.132040.
  24. Yang I, Jung M, Kim MS, Choi D, Jung JC. Physical and chemical activation mechanisms of carbon materials based on the microdomain model. J Mater Chem A. 2021;9(15), 9815-9825. https://doi.org/10.1039/D1TA00765C.
  25. Neme I, Gonfa G, Masi C. Activated carbon from biomass precursors using phosphoric acid: A review. Heliyon. 2022;8(12). https://doi.org/10.1016/j.heliyon.2022.e11940.
  26. Lawal S, Ahmad Zaini MA. Adsorption of water pollutants using H3PO4-activated lignocellulosic agricultural waste: a mini review. Toxin Rev. (2023);42(1):349-361. https://doi. org/ 10.1080/15569543.2022.2062775.
  27. Jjagwe J, Olupot PW, Menya E, Kalibbala HM. Synthesis and application of granular activated carbon from biomass waste materials for water treatment: A review. J Bioresour Bioprod. 2021;6(4):292-322. https://doi.org/10.1016/j.jobab.2021.03. 003.
  28. Albatrni H, Abou Elezz A, Elkhatat A, Qiblawey H, Almomani F. A green route to the synthesis of highly porous activated carbon from walnut shells for mercury removal. J Water Process Eng. 2024;58:104802. https://doi.org/10. 1016/j. jwpe.2024.104802.
  29. Wu L, Shang Z, Wang H, Wan W, Gao X, Li Z, Kobayashi, N. Production of activated carbon from walnut shell by CO2 activation in a fluidized bed reactor and its adsorption performance of copper ion. J Mater Cycles Waste Manage. 2018;20(3): 1676-1688. https://doi.org/10.1007/s10163-018-0730-9.
  30. Albatrni H, Qiblawey H, Al-Marri MJ. Walnut shell based adsorbents: A review study on preparation, mechanism, and application. J Water Process Eng. 2022;45:102527. https:// doi.org/10.1016/j.jwpe.2021.102527
  31. He W, Ni Z, Liu M, Cui M, Shi L, Zhao Y, Zhang Z. Evaluation of four preparation methods and electrochemical properties of walnut shell-based activated carbon. J Anal Appl Pyrolysis. 2025;192:107315. https://doi.org/10.1016/j.jaap. 2025. 107315.
  32. Reza MS, Yun CS, Afroze S, Radenahmad N, Bakar MSA, Saidur R, Azad AK. Preparation of activated carbon from biomass and its’ applications in water and gas purification, a review. Arab J Basic Appl Sci. 2020;27(1): 208-238. https://doi.org/10.1080/25765299.2020.1766799.
  33. Li X, Qiu, J, Hu Y, Ren X, He L, Zhao N, Zhao X. Characterization and comparison of walnut shells-based activated carbons and their adsorptive properties. Adsorpt Sci Technol. 2020;38(9-10):450-463. https://doi.org/10.1177/ 026361742094652.
  34. Bouchelkia N, Tahraoui H, Amrane A, Belkacemi H, Bollinger JC, Bouzaza A, Zoukel A, Zhang J, Mouni L. Jujube stones based highly efficient activated carbon for methylene blue adsorption: Kinetics and isotherms modeling, thermodynamics and mechanism study, optimization via response surface methodology and machine learning approaches. Process Saf Environ Prot. 2023;170:513-35. https://doi.org/10.1016/j.psep.2022.12.028.
  35. Wang J, Guo X. Adsorption kinetics and isotherm models of heavy metals by various adsorbents: An overview. Crit Rev Environ Sci Technol. 2023;53(21):1837-65. https://doi.org/10. 1080/10643389.2023.2221157
  36. Sriram G, Dhanabalan K, Vishwanath RS, Oh TH. Progress in porous carbon-based adsorbents for the removal of dyes from single and binary systems and their adsorption mechanism–a review. Inorg Chem Front. 2025;12:5563-5628. https://doi. org/10.1039/D5QI00952A
  37. Wang L. Removal of disperse red dye by bamboo-based activated carbon: optimisation, kinetics and equilibrium. Environ Sci Pollut Res. 2013;20:4635-4646. https://doi. org/10. 1007/s11356-012-1421-z.
  38. Vojnović B, Cetina M, Franjković P, Sutlović A. Influence of initial pH value on the adsorption of reactive black 5 dye on powdered activated carbon: kinetics, mechanisms, and thermodynamics. Mol. 2022;27(4),1349. https://doi.org/10. 3390/ molecules27041349
  39. Meskel AG, Kwikima MM, Meshesha BT, Habtu NG, Naik SC, Vellanki BP. Malachite green and methylene blue dye removal using modified bagasse fly ash: Adsorption optimization studies. Environ Challenges. 2024;14:100829.
  40. Harja M, Buema G, Bucur D. Recent advances in removal of Congo Red dye by adsorption using an industrial waste. Sci Rep. 2022;12(1):6087. https://doi.org/10.1038/s41598-022-10093-3.
  41. Hu J, Song Z, Chen L, Yang H, Li J, Richards R. Adsorption properties of MgO (111) nanoplates for the dye pollutants from wastewater. J Chem Eng Data. 2010;55(9):3742-3748. https://doi.org/10.1021/je100274e.
  42. Guo T, Bulin C, Ma Z, Li B, Zhang Y, Zhang B, Xing R, Ge X. Mechanism of Cd (II) and Cu (II) adsorption onto few-layered magnetic graphene oxide as an efficient adsorbent. ACS omega. 2021;16;6(25):16535-45. https://doi.org/10. 1021/ acsomega.1c01770
  43. Crini G, Badot PM. Application of chitosan, a natural aminopolysaccharide, for dye removal from aqueous solutions by adsorption processes using batch studies: A review of recent literature. Prog Polym Sci. 2008;33(4), 399-447.  https://doi.org/10.1016/j.progpolymsci.2007.11.001.
  44. Ghorbani F, Younesi H, Ghasempouri SM, Zinatizadeh AA, Amini M, Daneshi A. Application of response surface methodology for optimization of cadmium biosorption in an aqueous solution by Saccharomyces cerevisiae. Chem Eng J. 2008;145(2),267-275. https://doi.org/https://doi.org/10.1016 /j.cej.2008.04.028
  45. Lin L, Zhai SR, Xiao ZY, Song Y, An QD, Song XW. Dye adsorption of mesoporous activated carbons produced from NaOH-pretreated rice husks. Bioresource technology. 2013; 1;136:437-43. https://doi.org/10.1016/j.biortech.2013.03.048.
  46. Al-Harby NF, Albahly EF, Mohamed NA. Kinetics, isotherm and thermodynamic studies for efficient adsorption of Congo Red dye from aqueous solution onto novel cyanoguanidine-modified chitosan adsorbent. Polym. 2021;18;13(24):4446. https://doi.org/10.3390/polym13244446.
  47. Wu J, Wang J, Du Y, Li H, Jia X. Adsorption mechanism and kinetics of azo dye chemicals on oxide nanotubes: A case study using porous CeO2 nanotubes. J Nanopart Res. 2016;18:1-13. https://doi.org/10.1007/s11051-016-3497-8.
  48. Gupta VK. Application of low-cost adsorbents for dye removal–a review. J Environ manage. 2009;90(8):2313-2342. https://doi.org/10.1016/j.jenvman.2008.11.017.
  49. Pereira MF, Soares SF, Órfão JJ, Figueiredo JL. Adsorption of dyes on activated carbons: influence of surface chemical groups. Carbon. 2003;41(4):811-821. https://doi.org/10. 1016/ S0008-6223(02)00406-2.
  50. Bayramoglu G, Kunduzcu G, Arica MY. Preparation and characterization of strong cation exchange terpolymer resin as effective adsorbent for removal of disperse dyes. Polym Eng Sci. 2020;60(1),192-201. https://doi.org/10.1002/pen.25272.
  51. Gerçel Ö, Gerçel HF, Koparal AS, Öğütveren ÜB. Removal of disperse dye from aqueous solution by novel adsorbent prepared from biomass plant material. J Hazard Mater. 2008; 160(2-3),668-674. https://doi.org/10.1016/j.jhazmat.2008.03. 039.
  52. Yue QY, Li Q, Gao BY, Wang Y. Kinetics of adsorption of disperse dyes by polyepicholorohydrin-dimethylamine cationic polymer/bentonite. Sep Purif Technol. 2007;54(3), 279-290. https://doi.org/10.1016/j.seppur.2006.10.024.
  53. Markandeya N, Shukla SP, Dhiman N, Mohan D, Kisku GC, Roy S. An efficient removal of disperse dye from wastewater using zeolite synthesized from cenospheres. J Hazard Toxic Radioact Waste. 2017;21(4):04017017. https://doi.org/10. 1061/(ASCE)HZ.2153-5515.000036.
  54. Mittal N, Kaur M, Singh V. Adsorption studies on hydrophobic disperse dye using cellulose derived mesoporous activated carbon. Mater Today. 2022;62:7595-7599. https://doi.org/10.1016/j.matpr.2022.04.765.
  55. Ahmadishoar J, Bahrami HS, Movassagh B, Amirshahi HS, Arami M. Removal of disperse blue 56 and disperse red 135 dyes from aqueous dispersions by modified montmorillonite nanoclay. Chem Ind Cheml Eng Q. 2017;23(1), 21-29. https://doi.org/10.2298/CICEQ150116049A.
  56. Markandeya Shukla SP, Dhiman N. Characterization and adsorption of disperse dyes from wastewater onto cenospheres activated carbon composites. Environl Earth Sci. 2017;76(20), 702. https://doi.org/10.1007/s12665-017-7030-x.
  57. Hu J, Liu W, Xia L, Yu G, Huang H, Guo H, et al. Preparation of a cellulose-based adsorbent and its removal of Disperse Red 3B dye. Cellul. 2021;28(12), 7909-7924. https://doi.org/ 10.1007/s10570-021-04042-y.