ارزیابی کارایی نانوصفحات گرافن درحذف رنگزا‌های آلی از محلول‌های آبی

نوع مقاله : مقاله پژوهشی

نویسندگان

گروه علوم و مهندسی خاک، دانشکده کشاورزی، دانشگاه ملایر، ملایر، ایران، صندوق‌پستی: 84621-65741

10.30509/jcst.2025.167552.1259

چکیده

این پژوهش با هدف ارزیابی کارایی نانو صفحات گرافن در حذف رنگزا‌های کاتیونی رودامین B، مالاشیت سبز و متیلن بلو از محلول‌های آبی انجام شد. آزمایش‌ها با بررسی اثر متغیرهایی مانند مقدار جاذب (۱ تا ۵ گرم بر لیتر)، pH (۳ تا ۷)، زمان تماس (۱۰ تا۱۸۰ دقیقه) و دما (۲۰ تا ۶۰ درجه سانتی‌گراد) انجام شد. بازده جذب مالاشیت سبز در شرایط بهینه (4pH= ، دما °C 40، جاذب 2 گرم بر لیتر و زمان 90 دقیقه) برابر 15/88 درصد و بالاتر از دو رنگزای دیگر بود. مطالعه ایزوترم‌ها نشان داد که جذب مالاشیت سبز و متیلن بلو از مدل لانگمویر(90/0R²>) و رودامین  Bاز مدل فروندلیچ (۹۹/0= R²) تبعیت می‌کند. براساس مدل لانگمویر، حداکثر ظرفیت جذب (qmax) برای رودامین B، مالاشیت سبز و متیلن بلو به ترتیب 56/5، 65/5 و 78/11میلی‌گرم بر گرم به ‌دست آمد. داده‌های سینتیکی نیز بهترین برازش را با مدل شبه‌ مرتبه دوم (98/0<R² ) داشتند که بیانگر جذب شیمیایی است. عوامل ترمودینامیکی نیز گرماگیر و خودبه‌خودی بودن فرایند جذب را تأیید کردند. نتایج نشان می‌دهد نانوصفحات گرافن جاذبی کارآمد، اقتصادی و سازگار با محیط‌زیست برای حذف رنگزا‌های کاتیونی از فاضلاب صنعتی هستند.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Evaluation of the Efficiency of Graphene Nano- sheets in the Removal of Organic Dyes from Aqueous Solutions

نویسندگان [English]

  • Shahriar Mahdavi
  • Sadegh Yousefi ourand
  • Firouzeh Norouzi goldareh
  • Amin Toranjian
Department of Soil Science and Engineering, Faculty of Agriculture, Malayer University, P.O. Box: 65741-84621, Malayer, Iran.
چکیده [English]

This study aimed to evaluate the efficiency of graphene nano-sheets in the removal of cationic dyes Rhodamine B, Malachite Green, and Methylene Blue from aqueous solutions. The experiments were conducted by investigating the effects of various parameters, including adsorbent dosage (1–5 g/L), pH (3–7), contact time (10–180 minutes), and temperature (20–60 °C). The adsorption efficiency of Malachite Green under optimal conditions (pH = 4, temperature = 40 °C, adsorbent dosage = 2 g/L, contact time = 90 minutes) was 88.15%, which was higher than that of the other dyes. Isotherm studies showed that the adsorption of Malachite Green and Methylene Blue followed the Langmuir model (R² > 0.90), while Rhodamine B followed the Freundlich model (R² = 0.99). According to the Langmuir model, the maximum adsorption capacities (qmax) for Rhodamine B, Malachite Green, and Methylene Blue were found to be 5.56, 5.65, and 11.78 mg/g, respectively. The kinetic data best fitted the pseudo-second-order model (R² > 0.98), indicating chemisorption. Thermodynamic parameters also confirmed that the adsorption process was endothermic and spontaneous. Overall, the results demonstrated that graphene nano-sheets are an efficient, cost-effective, and environmentally friendly adsorbent for the removal of cationic dyes from industrial wastewater.

کلیدواژه‌ها [English]

  • Adsorption Rhodamine Malachite green Methylene blue Graphene nano
  • sheets
  • Naghipour D, Taghavi K, Ashournia M, Jaafari J, Movarrekh RA. A study of Cr (VI) and NH4+ adsorption using greensand (glauconite) as a low‐cost adsorbent from aqueous solutions. Water Environ J. 2020;34(1):45-56. https://doi.org/10.1111/ wej.12440.
  • Naghipour D, Rouhbakhsh E, Jaafari J. Application of the biological reactor with fixed media (IFAS) for removal of organic matter and nutrients in small communities. Int J Environ Anal Chem. 2022;102(17):5811–5821. https://doi. org/10.1080/03067319.2020.1803851.
  • Mustafa S, Bhatti HN, Maqbool M, Iqbal M. Microalgae biosorption, bioaccumulation and biodegradation efficiency for the remediation of wastewater and carbon dioxide mitigation: Prospects, challenges and opportunities. J Water Process Eng. 2021;41:102009. https://doi.org/10.1016/j.jwpe. 2021.102009.
  • Iqbal MA, Akram S, Lal B, et al. Advanced photocatalysis as a viable and sustainable wastewater treatment process: A comprehensive review. Environ Res. 2024:118947. https://doi.org/10.1016/j.envres.2024.118947
  • Li W, Xie Z, Xue S, et al. Studies on the adsorption of dyes, Methylene blue, Safranin T, and Malachite green onto Polystyrene foam. Sep Purif Technol. 2021;276:119435. https://doi.org/10.1016/j.seppur.2021.119435
  • Scaria J, Nidheesh PV, Kumar MS. Synthesis and applications of various bimetallic nanomaterials in water and wastewater treatment. J Environ Manage. 2020;259:110011. https://doi.org/10.1016/j.jenvman.2019.110011
  • Yildirim A, Acay H. Methylene blue and malachite green dyes adsorption onto Russula delica/bentonite/tripoly-phosphate. Heliyon. 2025;11(1):e19768. https://doi.org/10. 1016/j.heliyon.2024.e19768.
  • Lellis B, Fávaro-Polonio CZ, Pamphile JA, Polonio JC. Effects of textile dyes on health and the environment and bioremediation potential of living organisms. Biotechnol Res Innov. 2019;3(2):275–90. https://doi.org/10.1016/j.biori. 2019. 03.001.
  • Vedula SS, Yadav GD. Wastewater treatment containing methylene blue dye as pollutant using adsorption by chitosan lignin membrane: Development of membrane, characteri-zation and kinetics of adsorption. J Indian Chem Soc. 2022; 99(1):100263. https://doi.org/10.1016/j.jics.2021.100263.
  • Gehrke I, Geiser A, Somborn-Schulz A. Innovations in nanotechnology for water treatment. Nanotechnol Sci Appl. 2015;8:1–17. https://doi.org/10.2147/NSA.S50733.
  • Madadrang CJ, Kim HY, Gao G, et al. Adsorption behavior of EDTA-graphene oxide for Pb (II) removal. ACS Appl Mater Interfaces. 2012;4(3):1186–93. https://doi.org/10. 1021/am201645g.
  • Zhang X, Qin C, Gong Y, et al. Co-adsorption of an anionic dye in the presence of a cationic dye and a heavy metal ion by graphene oxide and photoreduced graphene oxide. RSC Adv. 2019;9(10):5313–5324. .https://doi.org/10.1039/C8RA 09438A
  • Rosli FA, Ahmad H, Jumbri K, et al. Efficient removal of pharmaceuticals from water using graphene nanoplatelets as adsorbent. R Soc Open Sci. 2021;8(1):201076. https://doi.org/10.1098/rsos.201076
  • Yang J, Shojaei S, Shojaei S. Removal of drug and dye from aqueous solutions by graphene oxide: Adsorption studies and chemometrics methods. NPJ Clean Water. 2022;5(1):5. https://doi.org/10.1038/s41545-022-00154-1
  • Moradi O, Taghavi S, Sedaghat S. Synthesis and characterization of nanocomposites of biodegradable polymers based on chitin, alginic, Sr, SiO₂ and graphene oxide nanoparticles to remove some colored contaminants. J Color Sci Technol. 2022;16(3):185–195. DOR:10.22105/jcst. 2022.387160.1251 [Persian].
  • Rout DR, Jena HM. Removal of malachite green dye from aqueous solution using reduced graphene oxide as an adsorbent. Mater Today Proc. 2021;47:1173-82. https://doi. org/10.1016/j.matpr.2021.04.625.
  • Han H, Wei W, Jiang Z, Lu J, Zhu J, Xie J. Removal of cationic dyes from aqueous solution by adsorption onto hydrophobic/hydrophilic silica aerogel. Colloids and Surfaces A: Physicochem Eng Aspects. 2016;509, 539-549. https://doi.org/10.1016/j.colsurfa.2016.09.056 ‏
  • De Gisi S, Lofrano G, Grassi M, Notarnicola M. Characteristics and adsorption capacities of low-cost sorbents for wastewater treatment: a review. Sustainable Mater Technol. 2016;9, 10-40. https://doi.org/10.1016/j.susmat. 2016.06.002.
  • Mary Ealias A, Saravanakumar MP. A critical review on ultrasonic-assisted dye adsorption: Mass transfer, half-life and half-capacity concentration approach with future industrial perspectives. Crit Rev Environ Sci Technol. 2019;49(21):1959-2015. https://doi.org/10.1080/10643389. 2018.1547622.
  • Behzad N, Moradi O, Raeisi H, Hakimi M, Mozafari S. Adsorption thermodynamics, isotherm and kinetics of cationic dyes using different synthesized graphene oxides. J Stud Color World. 2023;13(3):313-30. DOR:10.22105/jscw. 2023.390169.1326 [Persian].
  • Fierro, V., Torné-Fernández, V., Montané, D., & Celzard, A. (2008). Adsorption of phenol onto activated carbons having different textural and surface properties. Microporous and mesoporous materials, 111(1-3), 276-284.‏
  • Zhang YL, Chen JB, Lei Y, Zhou Q, Sun SQ, Noda I. Discrimination of different red wine by Fourier-transform infrared and two-dimensional infrared correlation spectroscopy. J Mol Struct. 2010;974(1-3):144-50. https://doi.org/10.1016/j.molstruc.2009.12.030
  • Surekha G, Krishnaiah KV, Ravi N, Suvarna RP. FTIR, Raman and XRD analysis of graphene oxide films prepared by modified Hummers method. In: J Phys Conf Ser. 2020 ;1495(1):012012. https://doi.org/10.1088/1742-6596/ 1495/ 1/012012.
  • Oluwasina OO, Adelodun AA, Oluwasina OO, Duarte HA, Olusegun SJ. Experimental and computational studies of crystal violet removal from aqueous solution using sulfonated graphene oxide. Sci Rep. 2024;14(1):6207. https://doi.org/ 10.1038/s41598-024-46702-9.
  • Geng D, Yang S, Zhang Y, Yang J, Liu J, Li R, et al. Nitrogen doping effects on the structure of graphene. Appl Surf Sci. 2011;257(21):9193–8. https://doi.org/10.1016/ j.apsusc.2011.05.068.
  • Kiziltaş H, Tekin T, Tekin D. Synthesis, characterization of Fe₃O₄@SiO₂@ZnO composite with a core-shell structure and evaluation of its photocatalytic activity. J Environ Chem Eng. 2020;8(5):104160. https://doi.org/10.1016/j.jece.2020. 104160.
  •  Bankole OM, Oyeneyin OE, Olaseni SE, et al. Kinetics and thermodynamic studies for rhodamine B dye removal onto graphene oxide nanosheets in simulated wastewater. Am J Appl Chem. 2019;7(1):10–24. https://doi.org/10.11648/j. ajac.20190701.12.
  • Aragaw TA, Alene AN. A comparative study of acidic, basic, and reactive dyes adsorption from aqueous solution onto kaolin adsorbent: Effect of operating parameters, isotherms, kinetics, and thermodynamics. Emerg Contam. 2022;8:59–74. https://doi.org/10.1016/j.emcon.2022.02.001.
  • Rashed MN, Arfeen ASAG, El-Dowy FA. Removal of Rhodamine-B dye using chemically modified activated Muscovite: kinetics, isotherms, and thermodynamic studies. J Chem Technol Metall. 2023;58(1):143–52.
  • Wang M, Yan R, Shan M, Liu S, Tang H. Fabrication of crown ether-containing copolymer porous membrane and their enhanced adsorption performance for cationic 

    dyes: experimental and DFT investigations. Chemosphere. 2024; 352: 141363. https://doi.org/10.1016/j.chemosphere. 2024. 141363.

  • Bukackova M, Rusnok P, Marsalek R. Mathematical methods in the calculation of the zeta potential of BSA. J Solution Chem. 2018;47, 1942-1952.‏ https://doi.org/10.1007/ s10953-018-0830-0
  • Ederer J, Ecorchard P, Slušná MŠ, Tolasz J, Smržová D, Lupínková S, et al. A study of methylene blue dye interaction and adsorption by monolayer graphene oxide. Adsorpt Sci Technol. 2022;2022:7385541. https://doi.org/10.1155/ 2022/ 7385541.
  • Manafi Dan M, Hadad Khodaparast MH, Azadmard Damirchi S, Valizadeh H, Tabatabaei Yazdi F. Preparation and some characteristics of nano liposomes containing olive leaf extract. Iranian J Food Sci Technol. 2018;14(72):155-63. Available from: https://sid.ir/paper/72446/en [In Persion].
  • He Q, Qi J, Liu X, et al. Carbon-in-silicate nanohybrid constructed by in situ confined conversion of organics in rectorite for complete removal of dye from water. Nanomater. 2023;13(19):2627. https://doi.org/10.3390/nano 13192627.
  • Zubair Arshad HM, Imran M, Haider A, et al. Dye degradation, antimicrobial activity, and molecular docking analysis of carbon sphere and graphene oxide–doped aluminum oxide. Front Environ Sci. 2023;11:1180229. https://doi.org/10.3389/fenvs.2023.1180229.
  • Kim M, Sharma N, Chung J, Yun K. Activated graphene with fractal structure for the adsorption of malachite green with high removal rate. Microporous Mesoporous Mater. 2021;322:111166. https://doi.org/10.1016/j.micromeso. 2021. 111166.
  • Khan A, Ju P, Han Z, Ni C. A comprehensive review on adsorptive removal of azo dyes using functional materials. Aqua. 2024;73(2):266–85. https://doi.org/10.2166/aqua. 2024. 123
  • Mthombo P. The preparation and catalytic activity of iron oxide silica nanofibers for the fenton degradation of methylene blue [master’s thesis]. Vaal University of Technology (South Africa); 2020.
  • Oyetade OA, Nyamori VO, Martincigh BS, Jonnalagadda SB. Effectiveness of carbon nanotube–cobalt ferrite nanocomposites for the adsorption of rhodamine B from aqueous solutions. RSC Adv. 2015;5(29):22724–39. https://doi.org/10.1039/C4RA15111A.
  • Chen M, Kumrić KR, Thacker C, Prodanović R, Bolognesi G & Vladisavljević GT. Selective Adsorption of Ionic Species Using Macroporous Monodispersed Polyethylene Glycol Diacrylate/Acrylic Acid Microgels with Tunable Negative Charge. Gels. 2023;9(11): 849. https://doi.org/10.3390/gels 9110849.
  • Ghaedi M, ed. Adsorption: Fundamental Processes and Applications. 1st ed. Academic Press; 2021.
  • Haruna MS, Scholartica CE, Tijani JO, Mustapha S, Oladapo BH, Abdulkareem, AS, Et Al (2024). Adsorptive removal of rhodamine b dye from aqueous solutions using carbon, nanotubes-iron tungstate nanocomposites: A box-behnken design study. Nano-Structures & Nano-Objects. 2024;37: 101101. https://doi.org/10.1016/j.nanoso.2024.101101.
  • Hameed SA, Abdel-Fadeel MA, Al-Saidi HM, Salam MA. Simultaneous removal of the toxic tungsten ions and rhodamine B dye by graphene nanosheets from model and real water. Desal Water Treat. 2020;188:266–76. https://doi.org/10.5004/dwt.2020.25402.
  • Kuśmierek K, Fronczyk J, Świątkowski A. Adsorptive removal of rhodamine B dye from aqueous solutions using mineral materials as low-cost adsorbents. Water Air Soil Pollut. 2023;234(8):531. https://doi.org/10.1007/s11270-023-06511-5. 
  • Muinde VM, Onyari JM, Wamalwa BM, Wabomba J. Adsorption of malachite green from aqueous solutions onto rice husks: kinetic and equilibrium studies. J Environ Prot. 2017;8(3):215-230. https://doi.org/10.4236/jep.2017.83017.
  • Savcı S, Dönmez S, Mazmancı MA. Performance and mechanisms of malachite green dye adsorption using industrial solid waste as adsorbent. Environ Eng Manag J. 2023;22(1):97–104. https://doi.org/10.30638/eemj.2023.009.
  • Naseeruteen F, Hamid NSA, Suah FBM, Ngah WSW, Mehamod FS. Adsorption of malachite green from aqueous solution by using novel chitosan ionic liquid beads. Int J Biol Macromol. 2018;107:1270-1277. https://doi.org/10.1016/j. ijbiomac. 2017.09.111. 
  • Jock AA, Joel AS, Olubajo OO, Zang CU, Ayuba MS, Wakili PT. Development of activated carbon from sawdust by pyrolysis and methylene blue adsorption. Int J Chem React Eng. 2021;19(5):473-481. https://doi.org/10.1515/ijcre-2020-0239.
  • Neolaka YAB, Kalla EBS, Malelak GA, Rukman NK, Supriyanto G, Puspaningsih NNT. Adsorption of methylene blue using acid activated green color natural zeolite from Ende-Flores, Indonesia. Rasayan J Chem. 2018;11(2):494-504. https://doi.org/10.7324/RJC.2018.1121994.
  • Saha P. Assessment on the removal of methylene blue dye using tamarind fruit shell as biosorbent. Water Air Soil Pollut. 2010;213(1-4):287–299. doi:10.1007/s11270-010-0384-2.
  • Wahyuni ET, Rendo D, Suherman S. Removal of methylene blue dye in water by using recoverable natural zeolite/Fe₃O₄ adsorbent. Global NEST J. 2021;23(1):119-126. https://doi. org/10.30955/gnj.003249