بررسی اثرغلاف نخود فرنگی به عنوان بازدارنده سبز بر خوردگی شیرین فولاد کم کربن

نوع مقاله : مقاله پژوهشی

نویسندگان

گروه مهندسی مواد، دانشکده مهندسی مکانیک، دانشگاه تبریز، تبریز، ایران، کدپستی: 5166616471

10.30509/jcst.2025.167445.1250

چکیده

خوردگی شیرین نوعی از خوردگی در صنعت نفت است که در آن گاز CO2 با آب واکنش داده و کربنیک اسید ایجاد شده و باعث خوردگی در فولاد می‌شود. یکی از روش‌های مقابله با خوردگی استفاده از بازدارنده خوردگی است. در این پژوهش، اثربازدارنده طبیعی عصاره غلاف نخود فرنگی به عنوان بازدارنده خوردگی جدید برای فولاد کم کربن مورد استفاده در صنایع گاز (API 5L X42) در محلول 3.5 درصد وزنی NaCl اشباع‌ شده با CO2 در غلظت‌های مختلف مورد بررسی قرار گرفت. روش‌های الکتروشیمیایی از قبیل آزمون قطبش و طیف‌سنجی امپدانس الکتروشیمیایی مورد استفاده قرار گرفت. نتایج نشان داد که حداقل زبری سطح در عصاره با غلظت ppm 100 ، 20.607 نانومتر بوده وهمچنین بهترین اثربخشی عصاره با درصد 69.76=  IE در غلظت ppm 100 در مقایسه با سایر غلظت‌ها است و نتایج حاصل از SEM و XRD نشان‌دهنده تشکیل یک لایه محافظ روی سطح نمونه‌ها است و عملکرد عصاره به صورت یک بازدارنده مختلط است.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Investigating the Effect of Pea Pods as a Green Inhibitor on Sweet Corrosion of Low Carbon Steel

نویسندگان [English]

  • ashkan kargozari
  • Shahin Khameneh Asl
Department of Materials Engineering, Faculty of Mechanical Engineering, Tabriz University, P.O. Code: 5166616471, Tabriz, Iran
چکیده [English]

Sweet corrosion is a type of corrosion in the oil industry in which CO2 gas reacts with water to form carbonic acid, which causes corrosion in steel. One of the methods of combating corrosion is the use of corrosion inhibitors. This study investigated the natural inhibitory effect of pea pod extract as a new corrosion inhibitor for low carbon steel used in the gas industry (API 5L X42) in a 3.5 wt. % NaCl solution saturated with CO2 at different concentrations. Electrochemical methods such as polarization tests and electrochemical impedance spectroscopy were used. The results showed that the minimum surface roughness in the extract at a concentration of 100 ppm was 607.20 nm and also the best effectiveness of the extract with a percentage of IE=69.76 at a concentration of 100 ppm compared to other concentrations. The results obtained from SEM and XRD indicate the formation of a protective layer on the samples' surface and the extract's function as a mixed inhibitor.

کلیدواژه‌ها [English]

  • Green corrosion inhibitors
  • Sweet corrosion
  • Electrochemical properties
  • Electrochemical impedance spectroscopy
  • Polarization
  1. Panchal J. comprehensive review and critical data analysis on corrosion and emphasizing on green eco-friendly corrosion inhibitors for oil and gas Industries. Bio-and Tribo- corrosion. 2021;(3): 107. https://doi.org/10.3390/app 10103389. 
  2. Touali Yo A. Dioxide Corrosion studies in Oil and Gas Productionre parameters [MSc thesis]. [London South Bank]: Univercity of London South Bank.2013. 
  3. Fontana Mar J. translated by Dr. Saatchi A. Corrosion Engineering.14th Ed. Jihad University of Isfahan Industrial Unit.1399 [In Persian].
  4. Asgari F. article on types of corrosion and its control methods.[Internet], 2019. Available From http://iran-mavad. com http://doi.org/10.24874/PES03.01.002 [In Persian].
  5. Rani B, Basu BBJ. Green inhibitors for corrosion protection of metals and alloys: an overview. Corros. 2012;(1):1687-9325 http://dorl.net/dor/10.1155/2012/380217. 
  6. Palumbo G. Dominika, Swiech, Górny M. Guar Gum as an Eco-Friendly Corrosion Inhibitor for N80 Carbon Steel under Sweet Environment in Saline Solution: Electrochemical, Surface, and Spectroscopic Studies. Int J Mol Sci. 2023;(24):7-16. https://doi.org/10.3390/ijms241512269.
  7. Ebrahim T, Gomes E, Obot IB, Khamis M, Abou Zour M. Corrosion inhibition of mild steel by Calotropis procera leaves extract in a CO2 saturated sodium chloride solution. Adhes Sci Technol. 2016;(30):2523–2543 https://doi.org/10.1080/016 94243. 2016.1185229.
  8. Sun Z, Singh A, Xu X, Chen S. Inhibition effect of pomelo peel extract for N80 steel in 3.5 % NaCl saturated with CO2 solution. Res Chem Intermed. 2017;(43):6719–6736 https://doi.org/ 10.1007/s11164-017-3017-1
  9. JNY P, Buchweishaija J, Mkayula L. Cashew nut shell liquid as an alternative corrosion inhibitor for carbon steel. Tanzania  J Sci. 2001;(27):9-19. https://doi.org/10.4314/tjs.v27i1.18332.
  10. Bendahou M, Benabdallah M, Hammouti B. A study of rosemary oil as a green corrosion inhibitor for steel in 2M H3PO4. Pigm Resin Technol. 2006;(35):95-100 https://doi.org/ 10.1108/03699420610652386.
  11. Bozorg M. Shahrabi T. Using Myrtex plant extract as a steel corrosion inhibitor Hydrochloric acid solution. New Processes Mater Eng. 2016(11):109-118 https://doi.org/20.1001.1. 24233226.1396.11.4.10.8 [In Persian].
  12. Beniwal A, Vikram, Singh S, Sangwan V, Punia D. Chemical Constituents (Proximate, Minerals, Bioactive Compounds) of Pea [Pisum sativum (L.)] Shells. Asian J Dairy Food Res. 2023; https://doi.org/ 10.18805/ajdfr.DR-1968. 
  13. Nabatipour S. and Mohamadi A. Preparation of chromone-based Schiff base as corrosion inhibitor for carbon steel in  Hydrochloric acid. Corros Sci Eng. 2019;(9):26 https://doi. org/10.1016/0010-938X(86)90066-1 [In Persian].
  14. Gadow HS, Motawea MM. Investigation of the corrosion inhibition of carbon steel in Hydrochloric acid solution by using ginger roots extract. Royal Soc Chem. 2017;(7):24576-24583 https://doi.org/10.1039/ C6RA28636D. 
  15. Singh A, Lin Y, Ebenso E, Liu W. Gingko biloba fruit extract as an eco-friendly corrosion inhibitor for J55 steel in CO2 saturated 3.5 % NaCl solution. Ind Eng Chem. 2015;(24): 219-228. https://doi.org/10.1016/j.jiec.2014.09. 034.
  16. Bhuvaneswari T, Vasantha V, Jeyaprabha C. Pongamia pinnata as a green corrosion inhibitor for mild steel in 1N sulfuric acid medium. Silicon. 2018;10(5):1793-1807. 10. 1007/s12633-017-9673-3.
  17. Rabizadeh T, Khameneh Asl S. Casein as a natural protein to inhibit the corrosion of mild steel in HCl solution. Mol Liq. 2019;(276);694-704. https://doi.org/10.1016/j.Molliq. 2018. 11.162 [In Persian].
  18. Brug G, Vanden Eeden ALG, Sluyters JH. The analysis of electrode impedances complicated by the presence of a constant phase element. Electroanal Chem Interfac Electrochem. 1984;(176):275-295. https://doi.org/10.1016/ S0022-0728(84)80324-1.
  19. Singh A, Ansari K, Chauhan DS, Quarashi MA. Comprehensive investigation of steel corrosion inhibition at macro/micro level by ecofriendly green corrosion inhibitor in 15 % HCl medium. Colloid Interface Sci. 2020;(560):225-236. https://doi.org/10.1016/j.jcis.2019.10.040.
  20. Eyu GD, Will G, Dekkers W, MacLeod J. The synergistic effect of iodide and sodium nitrite on the corrosion inhibition of mild steel in bicarbonate–chloride solution. Mater. 2016; (9):868-882 https://doi.org/10.3390/ma9110868.
  21. Ezuber H., Alshater A. Effect of surface finish on the pitting corrosion behavior of sensitized aisi 304 austenitic stainless steel alloys in 3.5 % NaCl solutions. Surf Eng Appl Electrochem. 2018;(54):73-80. https://doi.org/10.3103/S1068 375518010039.
  22. Feng L, Zhang S, Qiang Y, Xu S, Tan B, Chen S. The synergistic corrosion inhibition study of different chain lengthsionic liquids as green inhibitors for X70 steel in acidic medium. Mater Chem Phys. 2018;(215):29-241. https://doi. org/10.1016/j.matchemphys. 2018.04. 054.
  23. Satapathy AK, Gunasekaran G. Corrosion inhibition by Justicia gendarussa plant extract in hydrochloric acid solution. Corros Sci. 2009;(51):2848-2853 https://doi.org/10.1016/j. corsci.2009.08.016
  24. Foysal Ahmad AKM, Hossain N. Deteminig corrosion efficiency of a green solution prepared from extract of  dalbergia sissoo leaves in H2So4 and its characterization. IUBAT Review.2023;83-84 https://doi.org/10.3329/iubatr. v6i1.67232
  25. Singh A, Lin Y, Ebenso E, Liu W, Huang B. Determination of corrosion inhibition efficiency using HPHT autoclave by Gingko biloba on carbon steels in 3.5 % NaCl solution saturated with CO2. Electrochem Sci. 2014;(9):5993-6005. https://doi.org/10.1016/S1452-3981(23)10864-9.
  26. Arockia Selvi J, Arthanareeswari M, Pushpamalini T, Rajendran S, Vignesh T. Effectiveness of Vinca rosea leaf extract as corrosion inhibitor for mild steel in 1 N HCl medium investigated by adsorption and electrochemical studies. Int. J. Corros. Scale Inhib. 2020;(4):1438-1439. http://dx.doi.org/10.17675/2305-6894-2020-9-4-15.
  27. Majd MT, Shahrabi T, Ramezanzadeh B. Production of an eco-friendly anti-corrosion ceramic base nanostructured hybrid-film based on Nd (III)-C7H6N2 on the mild 
    steel surface. electrochemical and surface studies. Constr Build Mater. 2019;(221):456-468. https://doi.org/10.1016/j. conbuildmat.2019.06.122. 
  28. Froment F, Tourni´e A, Colomban P. Raman identification of natural red to yellow pigments: ochre and iron-containing ores. Raman Spectrosc. 2008;(39): 560–568 https://doi.org/ 10.1002/jrs.1858.
  29. Faisal M, Saeed A, Shahzad D, Abbas N, Ali Larik F, Ali Channar P, et al. General properties and comparison of the corrosion inhibition efficiencies of the triazole derivatives for mild steel. Corros. 2018;(36);507-545 https://doi.org/10.1515 /corrrev-2018-0006.
  30. Brycki B.E., Kowalczyk, I.H., Szulc, A., Kaczerewska, O., Pakiet, M. Organic corrosion inhibitors. Corrosion Inhibitors, Principles and Recent Applications. InTech;2018.3-33. https://doi.org/10.3390/lubricants11040174.
  31. Ostovari A, Hoseinieh SM, Peikari M, Shadizadeh SR, Hashemi SJ. Corrosion inhibition of mild steel in 1M HCl solution by henna extract: a comparative study of the inhibition by henna and its constituents (Lawsone,Gallic acid, a-d-Glucose and Tannic acid). Corros Sci. 2009;(51):1935-1949. https://doi.org/10.1016/j.corsci.2009.05.024.
  32. Rahim AA, Kassim J. 2010. Recent development of vegetal tannins in corrosion protection of iron and steel. Recent Patents Mater Sci. 100.2008;(3):223-231. https://doi.org/10. 2174/1874465610801030223.
  33. Oguzie EE. Evaluation of the inhibitive effect of some plant extracts on the acid corrosion of mild steel. Corros Sci. 2008;(50):2993-2998.https://doi.org/10.1016/j.corsci.2008.08. 004.
  34. Wei H, Heidarshenas B, Zhou L, Hussain G, Li Q, Ostrikov, K. Green inhibitors for steel corrosion in acidic environment: state of art. Mater Today Sustainabillity. 2020;(10): 100044. https://doi.org/10.1016/j.mtsust.2020.100044
  35. Hanini K, Merzoug B, Boudiba S, Selatnia I, Laouer H, Akkal S. Influence of different polyphenol extracts of Taxus baccata on the corrosion process and their effect as additives in electrodeposition. Sustainable Chem Pharm 2019;(14): 100189. https://doi.org/10.1016/j.scp.2019.100189.
  36. Marshakov I. Anodic dissolution and selective corrosion of alloys. Prot Met. 2002.38(2):118-123. http://dx.doi.org/10. 1023/A:1014908930959.
  37. Bentiss F, Lebrini M, Lagrenée M. Thermodynamic characterization of metal dissolution and inhibitor adsorption processes in mild steel/2,5-Bis(n-Thienyl)-1,3,4-Thiadiazoles/ hydrochloric acid system. Corros Sci. 2005; (47):2915-2931. http://dx.doi.org/10.1016/j.corsci.2005.05. 034