تاثیر نقره بر بهبود عملکرد فوتوآند TiO2-WO3درسلول خورشیدی حساس‌شده به مواد رنگزا

نوع مقاله : مقاله پژوهشی

نویسندگان

1 گروه مهندسی شیمی، دانشکده فنی، دانشگاه گیلان، رشت، ایران، صندوق پستی: 14965-115

2 گروه انرژی، پژوهشگاه پلیمر و پتروشیمی ایران، تهران، ایران، صندوق پستی: 14975-112

10.30509/jcst.2025.167479.1252

چکیده

سلول‌های خورشیدی حساس‌شده به مواد رنگزا (DSSC) به‌دلیل پدیده نوترکیبی الکترون‌ها در محل اتصال اکسید رسانا و الکترولیت، با محدودیت‌هایی در دستیابی به بازده بالا مواجه هستند. در این پژوهش، برای افزایش بازده DSSC از دو‌پ‌کردن نانوذرات TiO2 با نانوساختارهای WO3 و نقره استفاده شده است. نتایج نشان داد که استفاده از این ترکیب در ساخت فوتوآند موجب کاهش پدیده نوترکیبی الکترون‌ها و بهبود بازده تبدیل توان سلول خورشیدی می‌شود. تحلیل ریخت‌شناسی نانوذرات سنتزشده با استفاده از میکروسکوپ الکترونی روبشی (SEM) و طیف‌سنجی فروسرخ تبدیل فوریه (FTIR) انجام گرفت. یافته‌های این مطالعه نشان دادند که فوتوآند مبتنی بر نانوساختار سه‌گانه Ag-TiO2-WO3 عملکرد بهتری در مقایسه با فوتوآندهای ساخته‌شده از TiO2، WO و TiO2-WO خالص دارد. به‌طور مشخص، سلول دارای فوتوآند Ag-TiO2-WO3 به چگالی جریان اتصال کوتاه (Jsc) معادل mA/cm2 13.63 و بازده تبدیل توان برابر 6.87 درصد دست یافت. در مقابل، سلول‌های ساخته‌شده با فوتوآندهای TiO2، WO3، و TiO2-WO3 خالص به ترتیب بازده‌هایی برابر با 3.171، 0.93 و 5.631 درصد را نشان دادند.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Effect of Silver on Enhancing the Performance of TiO2-WO3 Photoanode in Dye-Sensitized Solar Cells

نویسندگان [English]

  • Samira Fallahdoust Moghadam 1
  • Neda Gilani 1
  • Ali Akbar Yousefi 2
1 Department of Chemical Engineering, College of Engineering, University of Guilan, P.O. Box: 115-14965, Guilan, Iran
2 Energy Department, Iranian Polymer and Petrochemical Research Institute, P.O. Box: 112-14975, Tehran, Iran
چکیده [English]

Dye-sensitized solar cells (DSSCs) face limitations in achieving high efficiency due to the electron recombination phenomenon at the conductive oxide-electrolyte interface. In this study, to enhance the efficiency of DSSCs, TiO2 nanoparticles were doped with WO3 nanostructures and silver. The results revealed that utilizing this combination in the fabrication of the photoanode reduces electron recombination and improves the power conversion efficiency of the solar cells. Morphological analysis of the synthesized nanoparticles was carried out using scanning electron microscopy (SEM) and Fourier-transform infrared spectroscopy (FTIR). The findings of this study showed that the photoanode based on the Ag-TiO2-WO3 ternary nanostructure exhibited better performance compared to photoanodes made of pure TiO2, WO₃, and TiO2-WO3. Specifically, the cell with the Ag-TiO2-WO3 photoanode achieved a short-circuit current density (Jsc) of 13.63 mA/cm² and a power conversion efficiency of 6.87 %. In contrast, cells made with photoanodes of pure TiO2, WO₃, and TiO2-WO3 demonstrated power conversion efficiencies of 3.171, 0.93, and 5.631 %, respectively.

کلیدواژه‌ها [English]

  • Silver DSSC Nanostructure Doping TiO2
  • WO3
  1. Korir BK., Kibet JK,  Ngari SM, A review on the current status of dye‐sensitized solar cells: Toward sustainable energy. Eng Sci Eng. 2024; 12(8):3188-3226. https://doi.org/ 10.1002/ese3.1815. 
  2. Falahdoost Moghadam S, Ahmadi K, Abdolahzade Ziabari A, Novin Vajari S, Omidtabrizi F. The effect of foamed cement nanocomposite as counter electrode on the performance of dye‐sensitized solar cell. Inter J App Ceramic Technol. 2023; 20(6): 3596-3607. https://doi.org/10.1111/ijac.14450.
  3. Rahmatian M, Sayyaadi H, A systematic review of a photoelectrical innovation: dye-sensitized solar cells. Int J Amb Energ. 2024;45(1):2366538. https://doi.org/10.1080/ 01430750.2024.2366538.
  4. Hoseinnezhad M, Qaranjig M, Qahari M, Fathi M. Investigation of the effect of semiconductor and counter electrode on the efficiency of dye-sensitized solar cells. J Color Sci Tech. 2024;18(3):181-190. https://doi.org/10. 30509/jcst.2024.167373.1238 [In Persian].
  5. Lim SP, Pandikumar A, Lim HN, Ramaraj R, Boosting photovoltaic performance of dye-sensitized solar cells using silver nanoparticle-decorated N, S-Co-doped-TiO2 photoanode. Sci Rep. 2015.5(1):11922. http://dx.doi.org/ 10.1038/srep11922.
  6. Gilani N, Fallahdoost Moghadam S, Yousefi AA. Investigating the Performance of the Graphene-WO3-TiO2 Ternary Composite in Dye-Sensitized Solar Cells. Iran J  Chem Eng. 2024;20(4):13-26. https://doi.org/10.22034/ ijche. 2024.434847.1512.
  7. Irannajad Parizi A, Janghorbani K. Fabrication of dye-sensitized solar cells based on TiO2-ZnO core shell nanorod electrodes and investigation of the effect of TiO2 layer thickness on cell efficiency. J Metall Eng. 2012, 11–26. https://civilica.com/doc/200883 . [In Persian]
  8. Ismail M, Olivier C, Toupance T. Hybrid WO3-nanorods/TiO2 photoanodes for improved dye-sensitized solar cells per-formances under back illumination. J  Mate Sci: Mat Elec. 2023;34(11):936.http://dx.doi.org/10.1007/s10854-023-10335 -8.
  9. Memari M. Memarian N, Designed structure of bilayer TiO2–Nb2O5 photoanode for increasing the performance of dye-sensitized solar cells. J Mat Sci: Mat Elec. 2020; 31(3): 2298-2307. https://link.springer.com/article/10.1007/s10854-019-02762-3.
  10. Kavan L, Vlckova Zivcova Z, Zlamalova M, Zakeeruddin SN,  Grätze M. Electron-selective layers for dye-sensitized solar cells based on TiO2 and SnO2. J Phys Chem C. 2020; 124(12): 6512-6521. https://doi.org/10.1021/acs.jpcc.9b11883.
  11. Yong SM. One-dimensional WO3 nanorods as photoelectrodes for dye-sensitized solar cells. J Allo Comp. 2013; 547:113-117. http://dx.doi.org/10.1016/j.jallcom.2012. 08.124.
  12. Younas M. Fabrication of cost effective and efficient dye sensitized solar cells with WO3-TiO2 nanocomposites as photoanode and MWCNT as Pt-free counter electrode. Ceram Int. 2019;45(10):936-947. https://doi.org/10.1016/j.ceramint. 2018.09.269 .
  13. Cheng P, Deng Ch, Dai Xi, Li B, Liu D, Xu J. Enhanced energy conversion efficiency of TiO2 electrode modified with WO3 in dye-sensitized solar cells. J Photochemistry  Phot A: Chem. 2008;195(1):144-150. https://doi.org/10.1016/j. jphotochem.2007.09.016. 
  14. Prabhu N. Enhanced photovoltaic performance of WO3 nanoparticles added dye sensitized solar cells. J Mat  Sci: Mat Elect. 2014; 25: 5288-5295. http://dx.doi.org/10.1007/s10854-014-2303-6. 
  15. Yang J.H, Kim K H, Bark Ch. Synthesis and characterization of WO3 doped TiO2 particle/nanowire layer in dye-sensitized solar cells. Mole Crys Liq Crys. 2014. 598(1):32-39. http://dx.doi.org/10.1080/15421406.2014.933295. 
  16. Shabani L, Enhancement of dye-sensitized solar cell efficiency using plasmonic gold nanocrystals coated with TiO₂ anMohammadi A, Jalali T. d SiO₂. Res Chem Nano. 2023, 8(74):34–41. https://www.magiran.com/p2725275.[In Persain] 
  17. Ramadhani DAK, Sholeha N, Khusna NN. Ag-doped TiO2 as photoanode for high performance dye sensitized solar cells. Mat Sci Ene Tech. 2024;7:274-281. https://doi.org/10. 1016/j.mset.2024.02.002. 
  18. Rohollah Amininejad H, Hoseinzadeh H. Optimization of plasmonic dye-sensitized solar cells using control of the Au/TiO₂ mass ratio and optimization of cell photoanode configuration. 2022,12(3),114–121.2501371[In Persian] .            
  19. Uthiravel V, Narayanamurthi K, Raja V. Anandhabasker S, Kuppusamy K, Green synthesis and characterization of TiO2 and Ag-doped TiO2 nanoparticles for photocatalytic and antimicrobial applications. Inorg Chem Comm, 2024;170: 113327. https://doi.org/10.1016/j.inoche.2024.113327. 
  20. Samuel O. Visible light-driven TiO2-WO3@GO photo-catalyst with catalytic memory for round-the-clock photocatalytic degradation of oilfield-produced water. Ceram Int. 2024;50(11):18205-18219. https://doi.org/10.1016/j. ceramint. 2024.02.305. 
  21. Lokman MQ, Shafie Sh, Shaban S, Ahmad F. Enhancing photocurrent performance based on photoanode thickness and surface plasmon resonance using Ag-TiO2 nanocomposites in dye-sensitized solar cells. Mater. 2019. 12(13):2111. https://doi. org/10.3390/ma12132111. 
  22. Wu, WY, Sun B, Tao B,Wang W, Chu PK. Ag–TiO2 composite photoelectrode for dye-sensitized solar cell. App Phys A. 2017;123:1-8. https://doi.org/10.1016/j. jmrt.2022.07. 134.
  23. Kandasamy M, Selvaraj F. Plasmonic Ag nanoparticles anchored ethylenediamine modified TiO2 nanowires@ graphene oxide composites for dye-sensitized solar cell. J Alloys Compd. 2022;902:163743. https://doi.org/10.1016/j. jallcom. 2022.163743. 
  24. Asahi R, Morikawa T, Ohwaki T, Aoki K, Visible-light photocatalysis in nitrogen-doped titanium oxides. Sci. 2001; 293(5528):269-271. https://doi.org/10.1126/science. 1061051. 
  25. Kazmi SA. Electrical and optical properties of graphene-TiO2 nanocomposite and its applications in dye sensitized solar cells (DSSC). J Alloys Compd. 2017;691:659-665. http://dx. doi.org/10.1016/j.jallcom.2016.08.319. 
  26. Gupta AK, Srivastava S, Bahadur L. Improved performance of Ag-doped TiO2 synthesized by modified sol–gel method as photoanode of dye-sensitized solar cell. App Phys A. 2016; 122:1-13. https://doi.org/10.1007/ s00339-016-0241-2. 
  27. Chang H. Effect of Core‐Shell Ag@ TiO2 Volume Ratio on Characteristics of TiO2‐Based DSSCs. J Nanomater. 2014; 2014(1):264108. http://dx.doi.org/10. 1155/2014/264108.  
  28. Basumatary B, Basumatary R. Evaluation of Ag@ TiO2/WO3 heterojunction photocatalyst for enhanced photocatalytic activity towards methylene blue degradation. Chem. 2022; 286:131848. http://dx.doi.org/10.1016/j.chemosphere.2021. 131848. 
  29. Li Y, Guangyuan H, Guilin D, Keyan W, Dequan Z, Ag/TiO2/WO3 nanoparticles with efficient visible light photocatalytic activity. Optoelectronics Lett. 2022; 18(1): 1-5. http://dx.doi.org/10.1007/s11801-022-1077-y.
  30. Abbaspoor M, Aliannezhadi M, Tehrani FS. High-performance photocatalytic WO3 nanoparticles for treatment of acidic wastewater. J Sol-Gel Sci Tech. 2023.105(2):565-576. http://dx.doi.org/10.1007/s10971-022-06002-9. 
  31. Bagheri S, Shameli K, Abd Hamid DB. Synthesis and characterization of anatase titanium dioxide nanoparticles using egg white solution via sol‐gel method. J Chem. 2013; 2013(1):848205. https://doi.org/10.1155/2013/848205. 
  32. Chandore V, Savant N, Synthesis of nano crystalline ZnO by microwave assisted combustion method: An eco friendly and solvent free route. Int J Environ. Sci Dev Monit. 2013;4(2). https://doi.org/10.1016/j.matlet.2011.10.112. 
  33. Hariri A, Gilani N, Pasikhani J, Promoting the photo-induced charge separation and photoelectrocatalytic hydrogen generation. Z-scheme configuration of WO3 quantum nanodots- decorated immobilized Ti/TiO2 nanorods. J All Comp, 2021;871: 159528. http://dx.doi.org/10.1016/j. jallcom. 2021.159528.