پیش‌بینی نتایج BYK-mac-i در اندازه‌گیری ویژگی دانه‌ای‌شدن در پوشش‌های متالیک با استفاده از اسکنر و روش‌های تحلیل بافتار

نوع مقاله : مقاله پژوهشی

نویسندگان

دانشکده مهندسی پلیمر و رنگ، دانشگاه صنعتی امیرکبیر، تهران، ایران، صندوق‌پستی: 4413-15875

10.30509/jcst.2025.167480.1253

چکیده

پوشش‌های متالیک به دلیل ویژگی‌های دیداری جذاب، در صنایع مختلفی از جمله خودروسازی و دکوراسیون مورد استفاده قرار می‌گیرند. ارزیابی دانه‌ای‌شدن بافتار این پوشش‌ها نقش مهمی در کنترل کیفیت آن‌ها دارد. در این پژوهش، روش‌های مختلف پردازش تصویر شامل تبدیل فوریه، تبدیل موجک، ماتریس هم‌وقوعی و بسامد لبه وابسته به فاصله، برای کمی‌سازی دانه‌ای‌شدن بافت پوشش‌های متالیک بررسی شدند. داده‌های به‌دست‌آمده از تحلیل بافتار، با نتایج گونیواسپکتروفوتومتر BYK-mac-i مقایسه شدند و میزان همبستگی آن‌ها محاسبه شد. نتایج نشان داد که تمامی روش‌ها ارتباط معناداری با نتایج دستگاهی دارند. از میان این روش‌ها، ویژگی همگنی به دست آمده از ماتریس هم‌وقوعی، بالاترین دقت را در کمی­سازی دانه‌ای شدن بافتار نشان داد و با ضریب همبستگی 0.88، تطابق بالایی با نتایج حاصل از گونیواسپکتروفوتومتر BYK-mac-i داشت. همچنین، ویژگی‌های میانگین دامنه طیف فوریه و انرژی موجک در کانال قطری در حوزه بسامد، به همراه ویژگی‌های انرژی و همبستگی ماتریس هم‌وقوعی و روش بسامد لبه وابسته در حوزه مکان، با ضرایب همبستگی بالاتر از 0.82 نتایج قابل قبولی ارائه دادند.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Prediction of BYK-mac-i Results for Assessing Graininess Characteristics in Metallic Coatings Using Scanner and Texture Analysis Methods

نویسندگان [English]

  • Fatemeh Malekpour
  • Saeideh Gorji Kandi
  • Mohsen Mohseni
Department of Polymer and Color Engineering, Amirkabir University of Technology, P.O. Box: 15875-4413, Tehran, Iran.
چکیده [English]

Metallic coatings are widely used in various manufacturing industries, including automotive and decoration, due to their visually appealing characteristics. Evaluating the texture graininess of these coatings plays a crucial role in quality control. This study investigated various image processing methods, including Fourier transform, wavelet transform, co-occurrence matrix, and distance-dependent edge frequency, to quantify the graininess attribute of metallic coatings. The texture analysis obtained data were compared with the BYK-mac-i gonio-spectrophotometer graininess, and the correlation between them was calculated. The results showed that all methods correlated significantly with the measured graininess data. Among these methods, the homogeneity derived from the co-occurrence matrix demonstrated the highest accuracy in quantifying texture graininess, with a correlation coefficient of 0.88. This result aligns closely with the findings obtained from the BYK-mac-i gonio-spectrophotometer. Additionally, the Fourier spectrum means and wavelet energy in the diagonal channel in the frequency domain and the energy and correlation features from the co-occurrence matrix and distance-dependent edge frequency method in the spatial domain provided acceptable results with correlation coefficients above 0.82.

کلیدواژه‌ها [English]

  • Metallic coatings Graininess Texture analysis BYK
  • mac
  • i gonio
  • spectrophotometer
  1. Buxbaum G, editor. Industrial inorganic pigments. 2nd ed. John Wiley & Sons; 2008.
  2. Maile FJ, Pfaff G, Reynders P. Effect pigments-past, present and future. Prog Org Coat. 2005;54(3):150-163. https://doi. org/10.1016/j.porgcoat.2005.07.003.
  3. Streitberger HJ. Automotive paints and coatings. 2nd ed. Germany: Wiley; 2008.
  4. McCamy CS. Observation and measurement of the appearance of metallic materials. Part I. Macro appearance. Color Res Appl. 1996;21(4):292-304. https://doi.org/10.1002/ (SICI)1520-6378(199608)21:4<292::AID-COL4>3.0.CO;2-L.
  5. McCamy CS. Observation and measurement of the appearance of metallic materials. Part II. Micro appearance. Color Res Appl. 1998;23(6):362-73. https://doi.org/10. 1002/(SICI)1520-6378(199812)23:6<362:AID-COL4> 3.0. CO; 2-5.
  6. American Society for Testing and Materials. ASTM E284-13a. Standard Terminology of Appearance. West Conshohocken, PA: ASTM International; 2013.
  7. Kirchner E, Van Den Kieboom GJ, Njo L, Super R, Gottenbos R. Observation of visual texture of metallic and pearlescent materials. Color Res. Appl. 2007;32(4):256-66.  https://doi.org/10.1002/col.20328.
  8. American Society for Testing and Materials. ASTM E284-17. Standard Terminology of Appearance. West Conshohocken, PA: ASTM International; 2017.
  9. Dekker N, Kirchner EJ, Super R, Van Den Kieboom GJ, Gottenbos R. Total appearance differences for metallic and pearlescent materials: contributions from color and texture. Color Res Appl. 2011;36(1):4-14. https://doi.org/10.1002/ col. 20586.
  10. Ferrero A, Bayón S. The measurement of sparkle. Metrologia. 2015;52(2):317. https://doi.org/10.1088/0026-1394/52/2/317.
  11. American Society for Testing and Materials. ASTM Standard E284-13b. Standard Terminology of Appearance. West Conshohocken, PA, USA: ASTM International; 2013.
  12. Perales E, Burgos FJ, Vilaseca M, Viqueira V, Martínez-Verdú FM. Graininess characterization by multidimensional scaling. J Mod Opt. 2019;66(9):929-38. https://doi.org/ 10. 1080/09500340.2019.1589006.
  13. Perales E, Micó-Vicent B, Huraibat K, Viqueira V. Evaluating the Graininess Attribute by Visual Scaling for Coatings with Special-Effect Pigm Coat. 2020;10(4):316. https://doi.org/10. 3390/coatings10040316.
  14. Ferrero A, Velázquez JL, Perales E, Campos J, Martínez Verdú FM. Definition of a measurement scale of graininess from reflectance and visual measurements. Opt Express. 2018; 26(23):30116-27. https://doi.org/10.1364/OE.26. 030116.
  15. Huang MJ, Chen HS, Luo R, Sun PL. Assessing appearance and emotional attributes of coloured metallic paints. 

    Color Technol. 2018;134(1):59-70. https://doi.org/10.1111/ cote. 12317.

  16. Ferrero A, Basic N, Campos J, Pastuschek M, Perales E, Porrovecchio G, et al. An insight into the present capabilities of national metrology institutes for measuring sparkle. Metrologia. 2020;57(6):065029. https://doi.org/10.1088/1681-7575/abb0a3.
  17. Winston Wang Z, Ronnier Luo M. Looking into special surface effects: diffuse coarseness and glint impression. Color Technol. 2016;132(2):153-61. https://doi.org/10.1111/cote. 12203.
  18. Kitaguchi S, Luo MR, Kirchner EJ, Van Den Kieboom GJ. Computational model for perceptual coarseness prediction. Proceedings of the conference on colour in graphics, imaging, and vision; 2006 Jan; UK: Society of Imaging Science and Technology; 2006.278-282.
  19. Ferrero A, Perales E, Basic N, Pastuschek M, Porrovecchio G, Schirmacher A, et al. Preliminary measurement scales for sparkle and graininess. Opt Express. 2021;29(5):7589-600. https://doi.org/10.1364/OE.411953.
  20. Filip J, Vávra R, Kolafová M, Maile FJ. Assessment of sparkle and graininess in effect coatings using a high-resolution gonioreflectometer and psychophysical studies. J Coat Technol Res. 2021;18:1511-30. https://doi.org/10. 1007/s11998-021-00518-5. 
  21. Amookht S, Kandi SG, Mahdavian M. Quantification of perceptual coarseness of metallic coatings containing aluminum flakes using texture analysis and visual assessment methods. Prog Org Coat. 2019;137:105375. https://doi.org/10. 1016/j.porgcoat.2019.105375.
  22. Amookht S, Kandi SG, Mahdavian M. Effect of surface texture on color appearance of metallic coatings. Prog Org Coat. 2014;77(7):1221-5. https://doi.org/10.1016/j.porgcoat. 2014.02.010.
  23. Amookht S, Kandi SG. Investigation of Flop Index by Variation in Size of Aluminum Flake and its Relation with the Surface Texture Quantified by Edge Frequency Method. Proceedings of the AIC 2017 Jeju. 2017:168. 
  24. Buades A, Coll B, Morel J-M, editors. A non-local algorithm for image denoising. Proceedings of the conference on computer vision and pattern recognition (CVPR'05); IEEE computer society; 2005; 2:60-65.
  25. Zhu Y, Huang C. An improved median filtering algorithm for image noise reduction. Phys Procedia. 2012;25:609-16. https://doi.org/10.1016/j.phpro.2012.03.133.
  26. Shrestha S. Image denoising using new adaptive based median filters. arXiv:1410.2175. 2014. https://doi.org/10. 48550/arXiv.1410.2175.
  27. Vincent OR, Folorunso O. A descriptive algorithm for sobel image edge detection. Proceedings of informing science & IT education conference (InSITE); 2009.
  28. Cristóbal G, Schelkens P, Thienpont H. Optical and digital image processing. fundamentals and applications: John Wiley & Sons; 2013.
  29. Gonzales RC, Wintz P. Digital image processing. 2nd ed. Addison-Wesley Longman Publishing Co., Inc.; 1987.
  30. Russ JC. The image processing handbook. 6th ed. CRC press; 2006.
  31. Livens S, Scheunders P, Van de Wouwer G, Van Dyck D. Wavelets for texture analysis, an overview. Proceedings of the 6th International Conference on Image Processing and its Applications; 1997 Jul 14; London UK: IEE. 1997. 581-585.
  32. Materka A, Strzelecki M. Texture analysis methods–a review. Technical university of lodz, institute of electronics, COST B11 report, Brussels. 1998;10(1.97):4968.
  33. Mirjalili F, Hardeberg JY. On the quantification of visual texture complexity. J Imaging. 2022;8(9):248. https://doi.org/ 10.3390/jimaging8090248.
  34. Kurniati FT, Manongga DH, Sediyono E, Prasetyo SYJ, Huizen RR. GLCM-Based feature combination for extraction model optimization in object detection using machine learning. J Ilm Tek Elektro Komput Dan Inform. 2024;9(4): 1196–1205. https://doi.org/10.48550/ arXiv.2404.04578.
  35. Haralick RM, Shanmugam K, Dinstein IH. Textural features for image classification. IEEE Trans. Syst., Man, Cybern. 1973(6):610-21. https://doi.org/10.1109/TSMC. 1973. 4309 314.
  36. Sutton RN, Hall EL. Texture measures for automatic classification of pulmonary disease. IEEE Trans. Comput. 1972;100(7):667-76. https://doi.org/10.1109/T-C.1972.2235 72.
  37. Haralick RM. Statistical and structural approaches to texture. Proc. IEEE. 1979;67(5):786-804. https://doi.org/10.1109/ PROC. 1979.11328