پیش‌بینی انعکاس پارچه نایلونی خیس با استفاده از مدل هندسی و تئوری کیوبلکا-مانک

نوع مقاله : مقاله پژوهشی

نویسندگان

گروه مهندسی نساجی، دانشکده فنی، دانشگاه گیلان، رشت، ایران، کدپستی: 4199613776

10.30509/jcst.2025.167444.1249

چکیده

خیس شدن پارچه باعث تغییر رنگ آن می‌شود. بنابراین، برای کنترل رنگ پارچه در فرایند رنگرزی، پیش‌بینی رنگ پارچه در حالت خیس بسیار مهم است. در این مقاله از مدل هندسی برای پیش‌بینی طیف انعکاسی پارچه نایلونی خیس بر اساس طیف انعکاسی حالت خشک آن استفاده شد. برای این منظور، نمونه‌های پارچه نایلونی با رنگزای اسیدی قرمز، آبی و زرد به صورت تکی و مخلوط رنگرزی شدند. آنالیز عامل‌های رنگی نمونه­ها نشان داد خیس شدن سبب تغییر رنگ، کاهش روشنایی و افزایش عمق رنگی پارچه می‌شود. از یک مدل هندسی و کیوبلکا-مانک، برای پیش‌بینی طیف انعکاسی پارچه نایلونی خیس استفاده شد. به منظور پیش‌بینی انعکاس پارچه در حالت خیس به روش مدل هندسی، از مقادیر ضریب جذب مولار رنگزا (ɛ)، ضریب جذب مولار رنگزا اصلاح شده، k/s واحد و k/s واحد اصلاح شده استفاده شد. خطای پیش‌بینی بر حسب اختلاف رنگ (ΔECMC) در چهار روش پیش­بینی، استفاده از مقادیر ضریب جذب مولار رنگزا، ضریب جذب مولار رنگزا اصلاحی، k/s واحد و k/s واحد اصلاح شده، به ترتیب 18.69، 15.51، 6.87 و 5.71 است. بهترین پیش‌بینی توسط مدل هندسی با استفاده از k/s واحد اصلاح ‌شده به دست آمد.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Prediction of the Reflectance of Wet Nylon Fabric Using the Geometric Model and Kubelka-Munk Theory

نویسندگان [English]

  • Sanaz Tofighi
  • Ali Shams nateri
Department of Textile Engineering, University of Guilan, P.O. Code: 4199613776, Rasht, Iran
چکیده [English]

Wetting the fabric changes its color; therefore, to control the fabric's color in the dyeing process, it is crucial to predict the fabric's color in its wet state. In this article, a geometric model was used to predict the reflectance spectra of wet nylon fabric based on the reflectance spectra of its dry state. For this purpose, nylon fabric samples were dyed individually and in mixtures with red, blue, and yellow acid dyes. Analysis of the color parameters of the samples shows that wetting causes color change, a decrease in lightness, and increases in color depth of the dyed fabric. To predict the fabric's reflectance in the wet state using the geometrical model, the molar absorption coefficient of the dye (ɛ), modified molar absorption coefficient (ɛ), unit k/s, and modified unit k/s values were utilized. The prediction error according to color difference (ΔECMC) in four prediction methods, using molar absorption coefficient (ɛ), modified molar absorption coefficient (ɛ), unit k/s, and modified unit k/s, were 18.69, 15.51, 6.87, and 5.71, respectively. The best prediction was achieved by the geometrical model using the modified unit k/s.

کلیدواژه‌ها [English]

  • Prediction Reflection Wetting Geometric Model Kubelka
  • Munk Color
  1. Nazir A, Hussain T, Ahmad F, Faheem S. Effect of knitting parameters on moisture management and air permeability of interlock fabrics. AUTEX Res J. 2014;14(1):39-46. https://doi.org/10.2478/v10304-012-0045-1
  2. McIntyre JE. Synthetic fibers: nylon, polyester, acrylic, polyolefin. Cambridge: Woodhead Publishing; 2005. https://doi. org/10.1016/B978-1-85573-588-0.50008-9.
  3. Munsell AEO, Sloan LL, Godlove IH. Neutral value scales I Munsell neutral value1 scale. J Opt Soc Am. 1993; 23(11): 394. https://doi.org/10.1364/josa.23.000394.
  4. Senthilkumar M, Selvakumar N, Shamey R. The effect of humidity, fabric surface geometry and dye type on the color of cotton fabrics dyed with a select range of anionic dyes. Dyes Pigm. 2011;90(3):225-32. https://doi.org/10.1016/j.dyepig. 2010.12.015.
  5. Sokkar TZN, El Sherif M, Bayoumi OA, Fouda IM. Color prediction of absorbing-scattering fibers dyed with a colorant mixture. J Appl Polym Sci. 1997; 63:1165-72. https://doi. org/10.1002/(SICI)1097-4628(19970228)63:9<1165::AID-APP8>3.0.CO;2-F.
  6. Senthilkumar M, Selvakumar N. Parameters involved in assessment of dry state color of fabrics from their wet state color. Indian J Fibre Text Res. 2007; 32:126-34.
  7. Lee JH, Kim SH, Lee KJ, Lim DY, Jeon HY. Determining the Absorption Properties of Split-Type Microfiber Fabrics by Measuring the Change in Color Depth. Text Res J. 2004; 74(3):271-8. https://doi.org/10.1177/004051750407400315.
  8. Smith C. The colour of textiles when wet: the relationship between wet and dry reflectance values for common textile materials. J Soc Dyers Colour. 1979:220-5. https://doi.org/ 10.1111/j.1478-4408.1979.tb03477.x.
  9. Garret DA, Peters RH. Effect of penetration on reflectance of dyed textile fibres. J Text Inst Trans. 1995; 47:314-6. https://doi.org/10.1080/19447027.1956.10750388.
  10. Tsoutseos AA, Nobbs JH. An alternative approach to the color appearance of textile materials with an application to the wet/dry reflectance prediction. Proceeding of the international conference and exhibition, 1998 April 1-3, Harrogate, Tennessee; 1998;22(25):334-46.
  11. Goldfinger G, Goldfinger HS, Hersh SP, Leonard TM. Effect of the continuous medium on the color of discontinuous substrates. I. Empirical relationship between the light reflectance of dry textile samples and samples immersed in water. J Polym Sci Part C: Polym Symp. 1970; 31:25-32. https://doi.org/10.1002/polc.5070310105.
  12. Hope Allen EH, Goldfinger G. The Color of Absorbing Scattering Substrates. I. The Color of Fabrics. J Appl Polym. 1972;16:2973-2982. https://doi.org/10.1002/app.1972. 07016 1121.
  13. Amiri S, Amirshahi HA. Comparison between Kubelka-Munk and Geometric Models for Prediction of Reflectance Factor of Transparent Fibers. Ravesh-haye Adadi dar Mohandesi. 2007;26(2):31-45. https://dor.isc.ac/dor/20.1001.1.22287698. 1386.26.2.8.7 [In Persian].
  14. Gorji M, Ansari K, Ameri F, Moradian S. A Concise Review on Color Match Prediction Models. J Sci Technol Color. 2014;8(3):249-60. https://dor.isc.ac/dor/20.1001.1. 17358779. 1393.8.3.9.9 [In Persian].
  15. Bernard P, Vanderhaeghen K, Kiekens P. Color Measurement of Pile Fabrics. Text Res J. 1999;69(8):552-558. https://doi. /10.1177/004051759906900802.
  16. Safi M, Ameri F, Ansari K. Determination of suitable wavelengths in dye concentration estimation by spectral analysis of K/S's scalability. Phys Scr. 2021;96:1-10. https://doi.org/10.1088/1402-4896/ac2b4a.
  17. Shams-Nateri A, Amirshahi SH, Latifi M. Prediction of Yarn Cross-Sectional Color from Longitudinal Color by Neural Network. Res J Text Apparel. 2006;10(2):25-35. https://doi.org/10.1108/RJTA-10-02-2006-B004.
  18. Goldfinger G, Wiggs H. The Effect of Internal Scattering on the Color of Fabrics. J Appl Polym Sci. 1978; 22:3459-68. https://doi.org/10.1002/app.1978.070221210.
  19. Allen EH, Faulkner DL, Goldfinger G, McGregor R. Effect of Continuous Medium on the Color of Discontinuous Substrate, IV. The Effect of the Refractive Index of the Continuous Medium. J Appl Polym Sci. 1973;17(3):873-84. https://doi. org/10.1002/app.1973.070170317
  20. Goldfinger G, Stafford L. The Color of Absorbing Scattering Substrates. II. The Prediction of the Color of a Fiber Bundle. J Appl Polym Sci. 1973;11(11):701-4. https://doi.org/ 10.1002/ pol.1973.130111107.
  21. Pirie N, Shams-Nateri A, Mokhtari J. A Novel Approach in Simulation of Spectral Reflectance of Nanopigment Coated Fabrics. J Sci Technol Color. 2018;12(3):229-40.https://dor. isc. ac/dor/20.1001.1.17358779.1397.12.3.7.5 [In Persian].
  22. Shams-Nateri A, Amirshahi SH. Prediction of Reflective Values of Acrylic Fibers along the Length and Cross Section Using Geometrical Model. Amirkabir J Sci Technol. 2002;29(1):287-304 [In Persian].
  23. Shams-Nateri A, Amirshahi SH, Latifi M. Use of Geometrical Model to Explain the Dual Reflective Behavior of Acrylic Yarns in Longitudinal and Cross Sections. Ravesh-haye Adadi dar Mohandesi. 2002;21(2):167-80 [In Persian].
  24. Kubelka P. New contributions to the optics of intensity light-scattering materials. Part I. J Opt Soc Am. 1948;38(5):448-57. https://doi.org/10.1364/josa.38.000448
  25. Kubelka P. New contributions to the optics of intensity light-scattering materials. Part II: Nonhomogeneous layers. J Opt Soc Am. 1954; 44(4):330-5. https://doi.org/10.1364/JOSA. 44.000330.
  26. Chickering KD. Optimization of the macadam-modified 1965 friele color-difference formula. J Opt Soc Am. 1967; 57(4): 537-541. https://doi.org/10.1364/JOSA.57.000537
  27. World dye variety. Available from: http://www. worlddyevariety. com.
  28. Chaouch S, Moussa A, Marzoug IB, Ladhari N. Application of genetic algorithm to color recipe formulation using reactive and direct dyestuffs mixtures. Color Res Appl. 2020; 45:896-910. https://doi.org/10.1002/col.22533.
  29. Hasenloo A, Shams-Nateri A, Izadan H. The effect of scanner resolution and bit depth on measuring color changes of fabric in small color space. J Sci Technol Color. 2022;16(2):123-134. https://dor.isc.ac/dor/20.1001.1.17358779.1401.16.2.3.7 [In Persian].
  30. Safi M, Amirshahi SH. Estimation of dye concentration by using Kubelka–Munk and Allen–Goldfinger reflective models: comparing the performance. Sci Rep. 2019; 13:1-11. https://doi.org/10.1038/s41598-023-29264-x.
  31. American society for testing and materials.ASTM D2244-07. Standard Practice for Calculation of Color Tolerances and Color Differences from Instrumentally Measured Color Coordinates. ASTM; 2007.
  32. Walowit E, McCarthy CJ, Berns RS. An algorithm for the optimization of kubelka munk absorption and scattering coefficients. Color Res Appl 1987;12(6):340-43. https://doi. org/10.1002/col.5080120609.
  33. Mark JE. Polymer data handbook. Oxford University Press; 1998.
  34. Roy Choudhury AK. Principles of color and appearance measurement. Volume 2: Visual measurement of color, color comparison and management. Woodhead Publishing; 2015.
  35. Brainard DH. 5 - Color appearance and color difference specification. In: The science of color. Elsevier B.V.; 2003; 191-216. https://doi.org/10.1016/B978-044451251-2/50006-4.
  36. Mokrzycki W, Tatol M. Color difference Delta E: A survey. Mach Graph Vis. 2011;20(4):383-411.
  37. Tsuruta M, Koshimo A. Steam and heat setting of nylon 6 fiber. II. Effects of heat setting of nylon 6 fiber on dyeability and fine structure. J Appl Polym Sci.1965;9(1): 11-23. https://doi.org/10.1002/app.1965.070090103.