تاثیر نانولوله کربنی بر خواص فوتوولتایی و ریخت‌شناسی سلول خورشیدی برپایه P3HT:PCBM

نوع مقاله : مقاله پژوهشی

نویسندگان

1 گروه مهندسی پلیمر، دانشکده مهندسی معدن، نفت و انرژی، دانشگاه آزاد اسلامی واحد علوم و تحقیقات، تهران، ایران، صندوق پستی: ۱۴۵۱۵/۷۷۵

2 داﻧﺸﮑﺪه ﻣﻬﻨﺪﺳﯽ ﭘﻠﯿﻤﺮ و رﻧﮓ، داﻧﺸﮕﺎه ﺻﻨﻌﺘﯽ اﻣﯿﺮﮐﺒﯿﺮ، ﺗﻬﺮان، اﯾﺮان، ﺻﻨﺪوق ﭘﺴﺘﯽ: 15875-4413

10.30509/jcst.2024.167358.1236

چکیده

در سال‌های اخیر، سلول‌های خورشیدی پلیمری بدلیل انعطاف‌پذیری بالا، شفافیت و قیمت پایین مواد، توجه بسیاری از محققان را به خود جلب نموده‌اند. در مطالعه حاضر سلول خورشیدی ناهمگون حجمی معکوس بر پایه پلیمر پلی‌تری‌هگزیل‌تیوفن (P3HT) ، فولرن‌ (PC61BM) و نانولوله کربنی تک دیواره عامل‌دار شده با گروه‌های اسیدی تهیه و اثر حضور نانولوله‌های کربنی بر خواص فوتوولتایی و ریخت‌شناسی بررسی گردید. نتایج نشان می‌دهد که حضور نانولوله‌های کربنی اگرچه سبب بهبود ولتاژ مدار باز می گردد و چگالی جریان را نیز افزایش می‌دهد، در نمونه‌های حاوی مقادیر بیشتری از SWCNT چگالی جریان روند کاهشی نشان می‌دهد. این موضوع ناشی از افزایش جذب فوتون پلیمر P3HT در محدوده طول موج‌های مرئی و نزدیک به فروسرخ و بهبود قابلیت انتقال بار الکتریکی است. بدلیل تضعیف فاکتور پرشدگی، توان تبدیل سلول‌های خورشیدی به میزان ۱۱ درصد کاهش می‌یابد که علت آن را می‌توان به کاهش سرعت جدایش اکسایتون، کاهش بلورینگی نسبی پلیمر و تخریب ریخت مطلوب جدایش اکسایتون نسبت داد.    

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Effect of Carbon Nanotube on the Morphological and Photovoltaic Property of P3HT:PCBM Based Solar Cell

نویسندگان [English]

  • Rezvan Soltani Shahyordi 1
  • Ali Asghar Katbab 2
1 Polymer Engineering department, Faculty of Mining, Petroleum and Energy Engineering, Science and Research Branch, Islamic Azad University, P.O. Box: 775/14515, Tehran, Iran
2 Faculty of Polymer & Color Engineering. Amirkabir University of Technology (Tehran Polytechnic), P.O. Box: 4413-15875, Tehran, Iran
چکیده [English]

In the past few years, there has been great interest in polymer solar cells due to their transparency, flexibility, and low cost of materials. In the present work, inverted bulk heterojunction polymer solar cell based on regioregular poly (3-hexyl thiophene) -(rrP3HT): (6,6)- phenyl- C61- butyric acid methyl ester and acid treated single wall carbon nanotube (SWCNT) has been manufactured and the effect of incorporating SWCNT on the photovoltaic property and morphology of the prepared solar cells has been investigated. Results demonstrate that even though SWCNT improves open circuit voltage as well as short circuit current density resulting from enhancement of light harvesting all over the spectra and better charge transport (for samples containing higher amount of SWCNT JSC reduces), power conversion efficiency declines as a consequence of diminishing fill factor which is affected by lower exciton dissociation, destruction of desired morphology for charge dissociation and reduced molecular ordering of P3HT.

کلیدواژه‌ها [English]

  • Organic solar cell
  • Single wall carbon nanotube
  • Hybrid solar cell
  • P3HT
  • Fullerene
  1. Sheibani E, Moslempoor M, Arami Ghahfarokhi F. Hole-Transporting Materials Based on p-Type Polymers in Invert Perovskite Solar Cells. Iran J Polym Sci Technol. 2023; 36 (2): 107-132. https://doi.org/10.22063/ JIPST. 2023. 3396. 2236. [In Persian] 
  2. Safardoust-Hojaghan H, Amiri O, Salavati-Niasari M, Hassanpour M, Khojasteh H, Foong LK. Performance improvement of dye sensitized solar cells based on cadmium sulfide/S, N co doped carbon dots nanocomposites. J Mol Liq. 2020;301:112413. https://doi.org/10.1016/j.molliq.2019. 112413. 
  3. Soltani R, Puscher BMD, Katbab AA, Levchuk I, Kazerouni N, Gasparini N, et al. Emproved charge carrier dynamics in polymer/perovskite nanocrystal based hybrid ternary solar cells. Phys Chem Chem Phys. 2018;20(36):23674-23683. https://doi.org/10.1039/C8CP03743D. 
  4. Logothetidis S. Flexible organic electronic devices: Materials, process and applications. Mater Sci Eng B Solid-State Mater Adv Technol 2008:152(3):96–104.https://doi.org/ 10.1016/j. mseb.2008.06.009.  
  5. Loos J. Volume morphology of printable solar cells Printable polymer or hybrid solar cells ( PSCs) have the potential. Mater Today. 2010;13(10):14–20. https://doi.org/10. 1016/ S1369-7021(10)70182-6. 
  6. Ameri T, Khoram P, Min J, Brabec CJ. Organic ternary solar cells: A review Adv Mater. 2013;25(31):4245–4266. https://doi.org/10.1002/adma.201300623. 
  7. Kim Y.S, Lee Y, Kim J. K, Seo E, Lee E, Lee W, et al. Effect of solvents on the performance and morphology of polymer photovoltaic devices. Curr Appl Phys. 2010;10(4):985–989. https://doi.org/10.1016/j.cap.2009.10.013. 
  8. Soltani R, Katbab AA, Schaumberger K, Gasparini N, Brabec CJ, Rechberger S, et al. Light harvesting enhancement upon incorporating alloy structured CdSeXTe1-X quantum dots in DPP:PC61BM bulk heterojunction solar cell. J Mater Chem C. 2017;5(3):654-662. https://doi.org/10.1039/ C6TC04308A. 
  9. Campoy-Quiles M, Ferenczi T, Agostinelli T, EtchegoinP. G, Kim Y, Anthopoulos TD, et al. Morphology evolution via self-organization and lateral and vertical diffusion in polymer:fullerene solar cell blends. Nat Mater. 2008;7(2):158-164. https://doi.org/10.1038/nmat2102.
  10. Kim H, Jeong H, An TK, Park CE, Yong K. Hybrid-type quantum dot co-sensitized ZnO nanowire solar cell with enhanced visible light harvesting. ACS Appl Mater Interfaces. 2012;5(2):268-275. https://doi.org/10.1021/am301960h. 
  11. Wang D, Baral JK, Zhao H, Gonfa BA, Truong V, Khakani MAE. et al. Controlled fabrication of pbs quantum-dot/carbon-nanotube nanoarchitecture and its significant contribution to near-infrared photon-to-current conversion. Adv Funct Mater. 2011;21(21):4010–4018. https://doi. org/10.1002/adfm.201100824. 
  12. Soltani R, Katbab AA, Sytnyk M, Yousefi Amin AA, Killilea N, Berlinghof M. et al. Morphology-Controlled Organic Solar Cells Improved by a Nanohybrid System of Single Wall Carbon Nanotubes Sensitized by PbS Core/Perovskite Epitaxial Ligand Shell Quantum Dots. Solar RRL. 2017; 1 (8): 1700043. https://doi.org/10.1002/solr.201700043 
  13. Wu M, Lin Y, Chen Sh, Liao H, Wu Y, Chen C. et al. Enhancing light absorption and carrier transport of P3HT by doping multi-wall carbon nanotubes. Chem Phys Lett. 2009; 468(1–3);64–68. https://doi.org/10.1016/j.cplett.2008.11. 080. 
  14. Ratier B, Nunzi J.-M, Aldissi M, Kraft T. M, Buncel E. Organic solar cell materials and active layer designs-improvements with carbon nanotubes: a review Polym Int. 2012;61(3):342–354. https://doi.org/10.1002/pi.3233. 
  15. Arranz-Andrés J, Blau WJ. Enhanced device performance using different carbon nanotube types in polymer photovoltaic devices. Carbon NY. 2008; 46(15):2067–2075. https://doi. org/10.1016/ j.carbon.2008.08.027. 
  16.  Berson S, De Bettignies R, Bailly S, Guillerez S , Jousselme B. Elaboration of P3HT/CNT/PCBM composites for organic photovoltaic cells. Adv Funct Mater. 2007;17(16):3363–3370. https://doi.org/10.1002/adfm.200700438. 
  17. Nismy NA, Jayawardena KDGI, Adikaari AADT, Silva SRP. Photoluminescence quenching in carbon nanotube-polymer/fullerene films: Carbon nanotubes as exciton dissociation centres in organic photovoltaics. Adv Mater. 2011;23(33):3796-3800. https://doi.org/10.1002/ adma. 201101549. 
  18. Boon F, Desbief S, Cutaia L, Douhéret O, Minoia A, Ruelle B. et al. Synthesis and characterization of nanocomposites based on functional regioregular poly(3-hexylthiophene) and multiwall carbon nanotubes. Macromol Rapid Commun. 2010;31(16):1427-1434.https://doi.org/10.1002/marc. 201000183. 
  19. Lee S, Ko e, Eom SH, Kim H, Kim DW, Lee C. et al.Composite Interlayer Consisting of Alcohol-Soluble Polyfluorene and Carbon Nanotubes for Efficient Polymer Solar Cells. ACS Appl Mater Interfaces. 2020;12(12):14244-14253. https://doi.org/ 10. 1021/ acsami.9b22933.
  20. Kymakis E, Amaratunga GAJ. Single-wall carbon nanotube/ conjugated polymer photovoltaic devices. Appl Phys Lett. 2002;80(1):112–114. https://doi.org/10.1063/1. 1428416. 
  21. Singh RK, Kumar J, Kumar A, Kumar V, Kant R, Singh R. Poly(3-hexylthiophene): Functionalized single-walled carbon nanotubes: (6,6)-phenyl-C61-butyric acid methyl ester composites for photovoltaic cell at ambient condition. Sol Energy Mater Sol Cells. 2010;94(12):2386–2394. https://doi. org/10.1016/j.solmat.2010.08.023. 
  22. Nogueira A, Lomba B, Soto-Oviedo M, Correia C, Corio P, Furtado C, et al. Polymer Solar Cells Using Single-Wall Carbon Nanotubes Modified with Thiophene Pedant Groups. J Phys Chem C. 2007;111(49):18431–18438. https://doi.org/ 10.1021/jp074979n.
  23. Stylianakis MM, Mikroyannidis JA, Kymakis EA facile, covalent modification of single-wall carbon nanotubes by thiophene for use in organic photovoltaic cells. Sol Energy Mater Sol Cells. 2010;94(2):267-274. https://doi.org/10. 1016/ j.solmat.2009.09.013. 
  24. Derbal-Habak H, Bergeret C, Cousseau J, Nunzi J. M. Improving the current density Jsc of organic solar cells P3HT:PCBM by structuring the photoactive layer with functionalized SWCNTs. Sol Energy Mater Sol Cells. 2011; 95(1):S53–S56. https://doi.org/10.1016/j.solmat.2010.12. 047. 
  25. Jun GH, Jin SH, Park SH, Jeon S, Hong SH. Highly dispersed carbon nanotubes in organic media for polymer:fullerene photovoltaic devices. Carbon N. Y. 2012;50(1):40–46. https://doi.org/10.1016/j.carbon.2011.07.052. 
  26. Lee J. M, Park JS, Lee SH, Kim H, Yoo S, Kim SO. Selective electron- or hole-transport enhancement in bulk-hetero-junction organic solar cells with N- or B-doped carbon nanotubes. Adv Mater. 2011;23(5):629–633.https://doi. org/10. 1002/adma.201003296
  27. Cakmak G, Guney HY, Yuksel SA, Gunes S. The effect of functionalized single walled carbon nanotube with octadecylamine on efficiency of poly-(3-hexylthiophene):[(6, 6)] phenyl C61 butyric acid methyl ester organic solar cells. Physica B: Condensed Matter. 2015;461:85-91. https://doi. org/10.1016/j.physb.2014.12.013.
  28. Chen YC, Hsu CY, Lin RYY, Ho KC, Lin JT. Materials for the active layer of organic photovoltaics: Ternary solar cell approach. Chem Sus Chem. 2013;6 (1):20–35. https://doi.org/ 10.1016/j.solener.2023.04.012
  29. Kymakis E, Kornilios N, Koudoumas E. Carbon nanotube doping of P3HT : PCBM photovoltaic devices. J Phys D. Appl Phys. 2008:41:165110. https://doi.org/10.1088/0022-3727/41/ 16/165110. 
  30. Le VT, Ngo CL, Le QT, Ngo TT, Nguyen DN, Vu MT. Surface modification and functionalization of carbon nanotube with some organic compounds. Adv Nat Sci Nanosci Nanotechnol. 2013;4(3):35017.https://doi.org/10. 1088/2043-6262/4/3/035017. 
  31. Koppe M, Egelhaaf H, Clodic E, Morana M, Lüer L, Troeger A, et al. Charge carrier dynamics in a ternary bulk heterojunction system consisting of P3HT, fullerene, and a low bandgap polymer. Adv Energy Mater. 2013;3(7):949-958. https://doi.org/10.1002/aenm.201201076. 
  32. Min J, Luponosov YN, Ameri T, Elschner A, Peregudova S. M, Baran D, et al. A solution-processable star-shaped molecule for high-performance organic solar cells via alkyl chain engineering and solvent additive. Org Electron. 2013; 14 (1):219-229. https://doi.org/10.1016/j.orgel.2012.11.002. 
  33. Mihailetchi VD, Xie H, De Boer B, Koster LJA, Blom PW. M. Charge transport and photocurrent generation in poly(3-hexylthiophene): Methanofullerene bulk-heterojunction solar cells. Adv Funct Mater.2006;16(5):699–708. https://doi.org/1 0.1002/adfm.200500420. 
  34. Liao H, Tsao C, Lin T, Jao M, Chuang C, Chang S, et al. Nanoparticle-Tuned Self-Organization of a Bulk Heterojunction Hybrid Solar Cell with Enhanced Performance. ACS Nano. 2012;6(2):1657–1666. https://doi. org/ 10.1021/nn204654h.