بررسی عملکرد پوشش‌های سیلیکونی و اپوکسی برای حفاظت چوب در مقابل باکتری و هوازدگی

نوع مقاله : مقاله پژوهشی

نویسندگان

گروه مهندسی علوم و صنایع چوب و کاغذ، دانشکد‌گان کشاورزی و منابع طبیعی، دانشگاه تهران، ایران، صندوق پستی: 77871-31587

10.30509/jcst.2024.167309.1226

چکیده

در این تحقیق، عملکرد پوشش سیلیکونی پلی‌دی‌متیل‌سیلوکسان (PDMS) و اپوکسی بر بهبود خواص ضدمیکروبی در مقابل باکتری گرم منفی (Escherichia coli) و گرم مثبت (Staphylococcus aureus) و مقاومت به هوازدگی سطح چوب توس (Betula pendula) بررسی شد. دو نوع پوشش PDMS و اپوکسی با غلظت 15 درصد به ترتیب درون حلال هگزان و استن تهیه و به روش غوطه‌وری/ امواج فراصوت بر روی چوب اعمال شدند. هوازدگی تسریع شده با چرخ کهنگی گاردنر برای مدت 330 ساعت انجام شد و سپس اختلاف رنگ ((∆E، زبری، زاویه تماس و جذب آب روی نمونه‌ها اندازه‌گیری شد. پوشش PDMS ضخامت فیلم بیشتر و اپوکسی جذب بیشتر پلیمر را نشان داد. هردو نوع پوشش با کارایی بالای 60 درصد، ویژگی‌های ضدباکتریایی خوبی را نشان دادند؛ ولی پوشش PDMS در مقایسه با اپوکسی، آ‌ب‌گریزی بالاتر، جذب آب و تغییرات زبری کمتری را طی دوره هوازدگی ارائه داد. در نهایت، پوشش‌دهی با PDMS و اپوکسی به ترتیب به میزان 77 و 42 درصد، تغییرات رنگ ناشی از هوازدگی چوب را کاهش دادند.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Evaluation of Silicone and Epoxy Coatings for Wood Protection Against Bacterial Growth and Outdoor Weathering

نویسندگان [English]

  • Akbar Mastouri
  • Davood Efhami
  • Asghar Tarmain
College of Agriculture & Natural Resources, University of Tehran, P.O. Box: 31587-77871, Tehran, Iran
چکیده [English]

In this research, the performance of silicone (Polydimethylsiloxane, PDMS) and epoxy coatings for improving microbial resistance against Gram-negative (Escherichia coli) and Gram-positive (Staphylococcus aureus) bacteria and resistance to outdoor weathering of birch wood (Betula pendula) was investigated. PDMS and epoxy coating with a concentration of 15 % were prepared in hexane and acetone solvents, respectively, and applied on wood using the immersion/ultrasound method. Accelerated outdoor weathering was done with a Gardner aging wheel for 330 hours, and then the changes in color (∆E), roughness, wettability, and 24h-water absorption of samples were measured. While PDMS showed more coating film thickness, epoxy one showed more polymeric coating uptake. Both coatings showed good anti-bacterial properties with an efficiency of over 60 %. However, compared to epoxy, PDMS coating provided low water absorption, higher hydrophobicity, and less roughness changes through accelerated weathering. Overall, coating with PDMS and epoxy treatment reduced the color changes of wood during weathering by 77 % and 42 %, respectively.

کلیدواژه‌ها [English]

  • Wood coating PDMS Epoxy Wood weathering Anti
  • bacterial
  1. Wan C, Lu Y, Sun Q, Li J. Hydrothermal synthesis of zirconium dioxide coating on the surface of wood with improved UV resistance. Appl. Surf. Sci. 2014;1(321):38-42. https://doi. org/10.1016/j.apsusc.2014.09.135. 
  2. Mastouri Mansourabad A, Azadfallah M, Tarmian A, Efhami Sisi D. Nano-cerium dioxide synergistic potential on abrasion resistance and surface properties of polyurethane-nanocomposite coatings for esthetic and decorative applications on wood. J Coat Technol Res. 2020;17(6): 1559-70. https://doi.org/10.1007/s11998-020-00374-9. 
  3. Kúdela J, Liptáková E. Adhesion of coating materials to wood. J. Adhes. Sci. Technol. 2006; 20(8):875-95. https://doi. org/ 10.1163/156856106777638725. 
  4. Gholamiyan H, Tarmian A, Ranjbar Z, Abdulkhani A, Azadfallah M, Mai C. Silane nanofilm formation by sol-gel processes for promoting adhesion of waterborne and solvent-borne coatings to wood surface. Holzforschung. 2016; 70(5):429-37.  https://doi.org/10.1515/hf-2015-0072. 
  5. Talaei A, Rezvani MH, Doost Mohammadi H. Investigation of adhesion strength of alkyd and nitro cellulose transparent coatings in different heat-treated poplar wood. J Color Sci  Tech. 2018;12(3):171-80. https://dorl. net/dor/ 20.1001. 1.17358779.1397.12.3.2.0 [In Persian].
  6. Tang CC, Li Y, Kurnaz LB, Li J. Development of eco-friendly antifungal coatings by curing natural seed oils on wood. Prog Org Coat. 2021;161:106512. https://doi.org/ 10. 1016/j.porgcoat.2021.106512. 
  7. Evans PD, Haase JG, Seman AS, Kiguchi M. The search for durable exterior clear coatings for wood. Coatings. 2015;5(4):830-64. https://doi.org/10.3390/coatings5040830. 
  8. Rowell RM. Understanding wood surface chemistry and approaches to modification: A review. Polymers. 2021; 13(15):2558. https://doi.org/10.3390/polym13152558. 
  9. Tu K, Wang X, Kong L, Chang H, Liu J. Fabrication of robust, damage-tolerant superhydrophobic coatings on naturally micro-grooved wood surfaces. RSC advances. 2016;6(1):701-7. https://doi.org/10.1039/C5RA24407B. 
  10. Psarski M, Pawlak D, Grobelny J, Celichowski G. Relationships between surface chemistry, nanotopography, wettability and ice adhesion in epoxy and SU-8 modified with fluoroalkylsilanes from the vapor phase. Appl Surf Sci. 2019; 15;479:489-98. https://doi.org/10.1016/j.apsusc.2019.02.082. 
  11. Elzaabalawy A, Meguid SA. Development of novel superhydrophobic coatings using siloxane-modified epoxy nanocomposites. Chem Eng J. 2020;398:125403. https://doi. org/ 10.1016/j.cej.2020.125403. 
  12. Liu F, Gao Z, Zang D, Wang C, Li J. Mechanical stability of superhydrophobic epoxy/silica coating for better water resistance of wood. Holzforschung. 2015;69(3):367-74. http://dx.doi.org/10.1515/hf-2014-0077. 
  13. Chang H, Tu K, Wang X, Liu J. Fabrication of mechanically durable superhydrophobic wood surfaces using polydimethyl-siloxane and silica nanoparticles. Rsc Advances. 2015; 5(39):30647-53. https://doi.org/10.1039/C5RA03070F. 
  14. Boscher ND, Vaché V, Carminati P, Grysan P, Choquet P. A simple and scalable approach towards the preparation of superhydrophobic surfaces–importance of the surface roughness skewness. J Mater Chem. 2014;2(16):5744-50. https://doi.org/10.1039/C4TA00366G. 
  15. Tu K, Wang X, Kong L, Guan H. Facile preparation of mechanically durable, self-healing and multifunctional superhydrophobic surfaces on solid wood. Mater Des. 2018;140:30-6. https://doi.org/10.1016/j.matdes.2017.11.029.  
  16. Mastouri A, Efhamisisi D, Tarmian A, Boukherroub R, Lexa M, Karami E, Panek M, Frigione M. Sustainable superhydrophobic and self-cleaning wood via wax within Epoxy/PDMS nano-composite coatings: Durability related to surface morphology. Prog Org Coat. 2024;186: 107951. https://doi.org/10.1016/j.porgcoat.2023.107951.  
  17. Nosál E, Reinprecht L. Anti-bacterial and anti-mold efficiency of silver nanoparticles present in melamine-laminated particleboard surfaces. BioResources. 2019;14(2):3914-24. http://dx.doi.org/10.15376/biores.14.2.3914-3924 
  18. L. Podgorski, A. Merlin, X. Deglise, Analysis of the natural and artificial weathering of a wood coating by measurement of the glass transition temperature. Holzforschung. 1996; 50:282-287. https://doi.org/10.1515/hfsg.1996.50.3.282 .
  19. Wang Y, Yan W, Frey M, Vidiella del Blanco M, Schubert M, Adobes‐Vidal M, Cabane E. Liquid‐Like SiO2‐g‐PDMS Coatings on Wood Surfaces with Underwater Durability, Antifouling, Antismudge, and Self‐Healing Properties. Adv. Sustain. Syst. 2019;3(1):1800070. http://dx.doi.org/10.1002/ adsu.201800070 
  20. L. Rosu L, Varganici CD, Mustata F, Rosu D, Rosca I, Rusu T. Epoxy coatings based on modified vegetable oils for wood surface protection against fungal degradation. ACS Appl. Mater. Interfaces. 2020;12(12):14443-58. https://doi.org/10. 1021/acsami.0c00682 
  21. Yang L, Wu Y, Yang F, Wang W. The effect of antibacterial and waterproof coating prepared from hexadecyltri-methoxysilane and nano-titanium dioxide on wood properties. Front. Mater. 2021;8:699579. http://dx.doi. org/10. 3389/ fmats.2021.699579 
  22. Kowalewska A, Majewska-Smolarek K. Self-Healing Antimicrobial Silicones—Mechanisms and Applications. Polymers. 2023;29:15(19):3945. https://doi.org/ 10.3390/ polym15193945. 
  23. Gao X, Wang M, He Z. Superhydrophobic wood surfaces: recent developments and future perspectives. Coatings. 2023;13(5):877. https://doi.org/10.3390/coatings13050877 
  24. Malshe VC, Waghoo G. Weathering study of epoxy paints. Prog Org Coat. 2004;51(4):267-72. https://doi.org/10. 1016/ j.porgcoat.2004.07.007 
  25. Krauklis AE, Echtermeyer AT. Mechanism of yellowing: Carbonyl formation during hygrothermal aging in a common amine epoxy. Polym. 2018;10(9):1017. https://doi.org/10. 3390/ polym10091017 
  26. Rajagopalan N, Khanna AS. Effect of methyltrimethoxy silane modification on yellowing of epoxy coating on UV (B) exposure. J coat 2014;(1):515470. http://dx.doi.org/10. 1155/ 2014/515470 
  27. Cassie A, Baxter S. Wettability of porous surfaces. Trans. Faraday Soc. 1944; 40:546–551. https://doi.org/10.1039/ TF9444000546. 
  28. Mastouri A, Azadfallah M, Rezaei F, Tarmian A, Efhamisisi D, Mahmoudkia M, Corcione CE. Kinetic studies on photo-degradation of thermally-treated spruce wood during natural weathering: Surface performance, lignin and cellulose crystallinity. Constr Build Mater. 2023;392:131923. https://doi.org/ 10.1016/j.conbuildmat.2023.131923
  29. Lionetto F, Del Sole R, Cannoletta D, Vasapollo G, Maffezzoli A. Monitoring wood degradation during weathering by cellulose crystallinity. Mater. 2012;5(10):1910-22. https://doi.org/10.3390/ma5101910.