تاثیر اصلاحات سطحی مختلف و دندانه زیستی کیتوسان بر رنگرزی نخ پشمی با رنگزای میکروبی فیکوسیانین

نوع مقاله : مقاله پژوهشی

نویسندگان

دانشکده مهندسی نساجی، دانشگاه یزد، یزد، ایران، کدپستی: ۸۹۱۵۸۱۸۴۱۱

چکیده

امروزه با رشد آگاهی در زمینه محیط‌زیست و تأکید بیشتر بر فرآیندهای پاک، استفاده از رنگزاهای طبیعی مورد توجه بسیاری قرارگرفته است. در این پژوهش رنگزای میکروبی فیکوسیانین به عنوان یک رنگزای طبیعی برای رنگرزی نخ های پشمی استفاده شد. به منظور بهبود خواص رنگی کالای پشمی، از اصلاحات سطحی پلاسمای تحت خلا، پرتو فرابنفش و همچنین دندانه زیستی کیتوسان استفاده شد. برای بررسی اصلاحات انجام شده، ثبات‌های شستشویی، نوری، مالشی، قدرت رنگی و فعالیت ضدمیکروبی نمونه‌ها مورد بررسی قرار گرفت. همچنین، به منظور بررسی گروه‌های عاملی و ریخت‌شناسی الیاف از طیف‌سنجی فروسرخ (FTIR) و میکروسکوپ الکترونی روبشی (SEM) استفاده شد. نتایج نشان داد، بیشترین قدرت رنگی (8.69) مربوط به نمونه اصلاح سطحی شده با فرابنفش و دندانه داده شده با دی کرومات پتاسیم است. همچنین، همه نمونه‌های رنگرزی شده فعالیت ضدمیکروبی عالی از خود نشان دادند. 

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

The Impact of Various Surface Modifications and Chitosan Bio-Mordant on the Dyeing of Wool Yarn with Phycocyanin Microbial Dye

نویسندگان [English]

  • Mohammad Khajeh Mehrizi
  • Seyed Ali Daryaei
  • Zahra Shahi
Department of Textile Engineering, Yazd University, P.O. Code: 8915818411, Yazd, Iran
چکیده [English]

Today, with the growing environmental consciousness and focus on eco-friendly processes, natural dyes are attracting considerable attention. This investigation employed Phycocyanin, a microbial dye, to naturally dye wool fibers. Methods such as plasma under vacuum, UV radiation surface modifications, and the use of chitosan bio-mordant were employed to enhance the color properties of wool products. The study assessed surface modifications, washing, light and rubbing fastness, color strength, and antimicrobial properties of the samples. Fourier-transform infrared spectroscopy (FTIR) and scanning electron microscopy (SEM) were used to examine the functional groups and morphology of the fibers. Findings revealed that the sample treated with UV radiation and potassium dichromate mordant achieved the highest color strength (8.69). Additionally, all dyed samples exhibited notable antimicrobial effectiveness.

کلیدواژه‌ها [English]

  • Wool yarn
  • Phycocyanin microbial dye
  • Chitosan
  • Plasma under vacuum
  • UV radiation
  • Antimicrobial activity
  1. Montazer M, Parvinzadeh M. Effect of ammonia on madder‐dyed natural protein fiber. J. applied polymer. sci. 2004; 93(6):2704-10. https://doi.org/10.1002/app.20880.
  2. Tambi S, Mangal A, Singh N, Sheikh J. Cleaner production of dyed and functional polyester using natural dyes vis-a-vis exploration of secondary shades. Prog. Color Colorants Coat. 2021; 14(2): 121-128.  https://doi.org/ 10.30509/PCCC.2021. 81700.
  3. Hosseinnezhad M, Gharanjig K, Jafari R, Imani H. Green dyeing of woolen yarns with weld and madder natural dyes in the presences of biomordant. Prog. Color Colorants Coat. 2021; 14: 35-45. https://doi.org/ 10.30509/pccc.2021.81678 
  4. Etezad SM, Rouhani Sh. Introducing some commonly used pigments produced by microorganisms. J Stud Color World . 2023; 13(1): 15-31. Https://dorl.net/ dor/ 20.1001.1.22517278. 1402.13.1.2.4. [In Persian].
  5. Ansari B, Khajeh Mehrizi M, Haji A. Dyeing of oxygen plasma treated wool fibers with Rhuem Ribes L. Flowers. J. Color Sci Tech. 2015; 9: 135-143. Https://dorl.net/dor/ 20.1001.1.17358779.1394.9.2.5.0. [In Persian].
  6. Haji A. Methods of improvement of dyeability of wool with natural dyes. J Stud Color World. 2021; 11(2): 1-16. Https://dorl.net/dor/ 20.1001.1.22517278.1400.11.2.1.1. [In Persian].  
  7. Guibal E, Roussy J. Coagulation and flocculation of dye-containing solutions using a biopolymer (Chitosan). React. Function. Poly. 2007; 67(1):33-42. http://dx.doi.org/10.1016/ j.reactfunctpolym.2006.08.008.
  8. Haji A, Qavamnia SS, Khosravi Bizhaem F. Salt free neutral dyeing of cotton with anionic dyes using plasma and chitosan treatments. Ind. Text. 2016; 67(2):109-113.
  9. Mohamed FA, Ali N. Surface modification of wool fabrics using chitosan nanoparticles before dyeing with synthesized direct dye and antimicrobial activity evaluation. Egyptian J. Chem. 2022; 65(13):317-25. http://dx.doi.org/10.21608/ejchem.2022.130482.5750.
  10. Rana MS, Mamun M, Biswas S, Sourov MR. Surface modification of wool fabric with chitosan and gamma radiation. Univ J Mech Eng. 2016; 4(1):130-9. http://dx.doi.org/10.13189/mst.2017.040101.
  11. Xin JH, Zhu R, Hua J, Shen J. Surface modification and low temperature dyeing properties of wool treated by UV radiation. Coloration Technol. 2002;118(4):169-73.
  12. Haji A, Ashraf S, Nasiriboroumand M, Lievens C. Environmentally friendly surface treatment of wool fiber with plasma and chitosan for improved coloration with cochineal and safflower natural dyes. Fibers.polym. 2020, 21:743-750.
  13. Haji A, Khajeh Mehrizi M, Sharifzadeh J. Dyeing of wool with aqueous extract of cotton pods improved by plasma treatment and chitosan: Optimization using response surface methodology. Fibers and Polymers. 2016, 17:1480-1488.
  14. Haji A, Khajeh Mehrizi M, Hashemizad S. Plasma and chitosan treatments for improvement of natural dyeing and antibacterial properties of cotton and wool. Vlakna Text. 2016;23(3):86-9.
  15. Mousavi AS, Khatami H, Tabatabaei Hanzaei SM, Mousavi SK. The effect of plasma oxygen on wool dyeing for modifying dyeing fiber surface properties and reducing the environmental effects of wastewater dyeing industry, Human and Environment. 2022, 60: 273-281.
  16. Sadeghi-Kiakhani M, Safapour S, Sabzi F, Tehrani-Bagha A. Effect of ultra violet (UV) irradiation as an environmentally friendly pre-treatment on dyeing characteristic and colorimetric analysis of wool, Fibers Polym. 2020; 21(1): 179-187. https://doi.org/10.1007/s12221-020-9154-y. 
  17. Haji A. Natural dyeing of wool with henna and yarrow enhanced by plasma treatment an optimized with response surface methodology. J Text Institute. 2019; 111(4): 467-475. https://doi.org/10.1080/00405000. 2019.1642710.
  18. Abedi D, Mortazavi SM, Khajeh Mehrizi M, Feiz M. Antimicrobial properties of acrylic fabrics dyed with direct dye and a copper salt, Text Res J. 2008; 78(4):311-319 https://doi.org/10.1177/004051750809048. 
  19. Haji A. A review on surface modification of wool fibers using plasma technology and its effect on dyeing properties. J Text Sci Technol. 2015;5(3):35-43.
  20. Haji A, Khajeh Mehrizi M, Moradi Z. Improving dyeability of wool fibers with Weld by plasma operation. National Conference on Dyes, Environment and Sustainable Development. Tehran, 2018.
  21. Millington KR. Comparison of the effects of gamma and ultraviolet radiation on wool keratin. Color. Technol. 2000; 116(9): 266-272. https://doi.org/10.1111/j.1478-4408.2000. tb00045.x
  22. Sadeghi-Kiakhani M, Safapour S, Sabzi F, Tehrani-Bagha AR. Effect of ultra violet (UV) irradiation as an environmentally friendly pre-treatment on dyeing characteristic and colorimetric analysis of wool. Fiber. Polym. 2020; 21: 179-187. https://doi.org/10.1007/s12221-020-9154-y.
  23. Barani H, Haji A. Analysis of structural transformation in wool fiber resulting from oxygen plasma treatment using vibrational spectroscopy. J. Mol. Struct. 2015; 1079: 35-40. https://doi.org/10.1016/j.molstruc.2014.09.041.
  24. Nazan C, Ashabil A, Mehtap K. Antimicrobial activities of some natural dyes and dyed wool yarn. Iran. J. Chem. Eng. 2017;36(4): 137-144.
  25. Zarandi-Miandoab L, Pouryosef F, Razavi SF, Chaparzade N. Phycocyanin, as a cyanobacterial antioxidant: structure, function and applications. J. Plant Process Function. 2022;1: 1-21