استفاده از روش‌های طیف‌سنجی و میکروسکوپی در بررسی شاخصه‌های شناسایی رنگدانه تولیدی براساس دستورالعمل‌های سنتی ایرانی: قرمز شنگرف

نوع مقاله : مقاله پژوهشی

نویسندگان

دانشکده حفاظت آثار فرهنگی، دانشگاه هنر اسلامی تبریز، تبریز، ایران، کد پستی: 5164736931

چکیده

شنگرف یکی از رایج‌ترین رنگدانه‌های قرمز در طول تاریخ بوده و به طور طبیعی و مصنوعی به دست می‌آید. با توجه به اهمیت و کاربرد گسترده این رنگدانه در آثار هنری ایرانی، این تحقیق سعی می‌کند با روش‌های میکروسکوپی و طیف‌سنجی، ویژگی‌های شناسایی شنگرف طبیعی و مصنوعی را مورد بررسی قرار دهد. بنابراین، این پژوهش در پی پاسخ به این سوال است که شاخصه‌های شناسایی رنگ شنگرف تولید شده بر اساس دستورالعمل‌های سنتی ایرانی چیست؟ شنگرف طبیعی از بازار تاریخی تبریز تهیه و شنگرف مصنوعی بر اساس دستورالعمل‌های مختلف از رساله‌های ایرانی قرون 12تا 19 میلادی ساخته شد. پس از طی فرایندهای لازم همچون اسیدشویی با آب انار و آب لیمو، شاخصه‌های شناسایی رنگدانه به صورت خالص و در ترکیب با بست‌های صمغ و سریشم با استفاده از میکروسکوپ نور پلاریزه، طیف‌سنجی رامان، SEM-EDX و طیف‌سنج انعکاسی مورد بررسی قرار گرفت. نتایج نشان می‌دهد با اینکه دشواری تفکیک شنگرف مصنوعی و طبیعی با میکروسکوپ نوری، تفاوت مورفولوژی شنگرف طبیعی و مصنوعی در تصاویر SEM به خوبی نمایان می‌شود. همچنین آنالیز EDX نمونه‌های طبیعی و مصنوعی باتوجه به وجود ناخالصی در شنگرف طبیعی امکان شناسایی آنها را با توجه به نسبت گوگرد به جیوه فراهم می‌کند. تحلیل طیف رامان با تاکید بر نوار cm-1 253 می‌تواند شاخص مهمی برای شناسایی رنگدانه شنگرف بدون دخالت تاثیرات بست باشد. اما تفکیک رنگدانه طبیعی و مصنوعی نیاز به تحلیل‌های آماری دارد.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Using Spectroscopic and Microscopic Methods in the Study of the Identification Characteristics of Paint Materials Produced Based on Traditional Persian Recipes: Cinnabar Red

نویسندگان [English]

  • Ali Nemati-Babaylou
  • Alireza Koochakzaei
  • Leyla Malekifar
Faculty of Cultural Materials Conservation, Tabriz Islamic Art University, P.O. Code: 5164736931, Tabriz, Iran
چکیده [English]

Cinnabar was one of the most common red pigments throughout history and was obtained naturally and artificially. Considering this pigment's importance and wide application in Persian artworks, this research will attempt to study the identification characteristics of natural and artificial cinnabar by microscopic and spectroscopic methods. Therefore, the research tries to answer the question, what are the identifying characteristics of the cinnabar resulting from its making methods in old Persian recipes? Natural cinnabar was prepared from the historical bazaar of Tabriz, and artificial kind was made based on different old Persian recipes from the 12th to the 19th centuries. After applying the necessary processes on samples, including acid washing with pomegranate juice and lemon juice, the identification characteristics of the pigment in pure form and combination with gum and animal glue binders were investigated using a polarized light microscope, Raman spectroscopy, SEM-EDX, and reflective spectrophotometer. The results show that despite the difficulty of separating artificial and natural cinnabar with a light microscope, they separate by SEM images based on their morphology differences. Also, EDX analysis makes it possible to identify them according to the ratio of sulfur to mercury due to impurities in natural cinnabar. Analysis of the Raman spectrum with an emphasis on the 253 cm-1 band can be an important indicator for identifying cinnabar pigments without interfering with binding effects. However, the distinction between natural and synthetic pigments requires statistical analysis.

کلیدواژه‌ها [English]

  • Pigment identification Cinnabar Persian Recipes Optical microscope SEM
  • EDX Raman Reflectance spectrophotometer
  1. Li T, Xie YF, Yang YM, Wang CS, Fang XY, Shi JL, He QJ. Pigment identification and decoration analysis of a 5th century Chinese lacquer painting screen: a micro‐Raman and FTIR study. Journal of Raman Spectroscopy: An International Journal for Original Work in all Aspects of Raman Spectroscopy, Including Higher Order Processes, and also Brillouin and Rayleigh Scattering. 2009;40(12):1911-8. https://doi.org/10.1002/jrs.2340
  2. Patnaik P. Handbook of inorganic chemicals: McGraw-Hill New York; 2003.
  3. Terrapon V, Béarat H, editors. A study of cinnabar blackening: new approach and treatment perspective. Conference paper: The 7th International Conference on Science and Technology in Archaeology and Conservation at Petra, Jordan; 2010.
  4. Gliozzo E. Pigments—Mercury-based red (cinnabar-vermilion) and white (calomel) and their degradation products. Archaeological and Anthropological Sciences. 2021;13(11):210. https://doi.org/10.1007/s12520-021-01402-4
  5. Gettens RJ, Stout GL. Painting materials: a short encyclopedia: Courier Corporation; 2012.
  6. Gettens RJ, Feller RL, Chase WT. Vermilion and cinnabar. Studies in Conservation. 1972;17(2):45-69.
  7. Frost RL, Edwards HG, Duong L, Kloprogge JT, Martens WN. Raman spectroscopic and SEM study of cinnabar from Herod's palace and its likely origin. Analyst. 2002;127(2):293-6. https://doi.org/10.1039/B109368C.
  8. Aqili Rostamdari H. Khat va Morakkab (Calligraphi and Ink). In: Hirawi NM, editor. The art of bibliography in islamic civilization,. Mashhad, Iran: Printing and Publishing Department of Astan Quds Razavi; 1993. 323-343.
  9. Juhari Nayshaburi MiAa-B. Javahir Namah-i Nizami. Daryadel IAaM, editor. Tehran, Iran: Public Relations of Written Heritage Research Institute; 2005.
  10. Kashani AlQ. Arayes al-javaher va nafayes al-atayeb. Afshar I, editor. Tehran, Iran: Almaei Publication; 2007.
  11. Koochakzaei A, Alizadeh Gharetapeh S, Jelodarian Bidgoli B. Identification of pigments used in a Qajar manuscript from Iran by using atomic and molecular spectroscopy and technical photography methods. Heritage Science. 2022;10(1):30. https://doi.org/10.1186/s40494-022-00665-x.
  12. Koochakzaei A, Hamzavi Y, Mousavi Ma-SS. Characterization of the mural blue paintings in ornamental motif of Ali Qapu palace in Isfahan, Iran, using spectroscopic and microscopic methods (a case study). J Archaeol Sci: Reports. 2022;45:103632. https://doi.org/10.1016/j.jasrep. 2022.103632.
  13. Koochakzaei A, Hamzavi Y, Shojae Far F. Identification of red, blue and golden pigments in Qajar Mural Painting anaclitic fire place in Goharion House in Tabriz. J Color Sci Tech. 2022;15(4):287-99. https://dorl.net/dor/20.1001.1. 17358779.1400.15.4.3.4 [in persian].
  14. Koochakzaei A, Mobasher Maghsoud E, Jelodarian Bidgoli B. Non-invasive imaging and spectroscopy techniques for identifying historical pigments: a case study of Iranian manuscripts from the Qajar era. Heritage Science. 2023;11(1):157. https://doi.org/10.1186/s40494-023-01011-5
  15. Koochakzaei A, Nemati Babaylou A, Daneshpoor L. Identification of pigments used in decoration of paper inscription related to Ansarin house of Tabriz. J Color Sci Tech. 2015;9(4):297-306. https://dorl.net/dor/20.1001.1. 17358779.1394.9.4.3.2 [in persian].
  16. Mobasher Maghsoud E, Koochakzaei A. An overview of traditional pigments (part II): ultramarine Blue and Emerald Green. J Stud Color World. 2023;12(4):369-85. https://dorl. net/dor/20.1001.1.22517278.1401.12.4.5.6 [in persian].
  17. Mobasher Maghsoud E, Koochakzaei A. An overview of traditional pigments (Part I): white lead and red lead. J Stud Color World. 2022;12(3):209-22. https://dorl.net/dor/20. 1001.1.22517278.1401.12.3.1.0 [in persian].
  18. Firooznia A, Ashrafi A, Bahrololoumi F. Identification of the materials and pigments used in the rooms of the Dormiani-home (from the Qajar dynasty). J Res Archaeom. 2020;6(1):47-66. http://dx.doi.org/10. 29252/jra.6.1.47.
  19. Gholamzade Kalaei A, Samanian K. Structural analysis of materials and techniques of Plinth Ornaments of Safavid Era: A case study of Shah Abbas II Mausoleum in Qom. J Visual Appl Arts. 2018;10(20):117-31. https://doi.org/10.30480/ vaa.2018.617.
  20. Abbasi J, Bahadori R, Bozorgmehr MA, Beheshti SI, Bahrololoumi F. Identification of materials and pigments used in mural painting of rahim abad historic garden & mansion in birjand. J Res Archaeom. 2017;2(2):63-76. http://dx.doi. org/10.29252/jra.2.2.63.
  21. Bagherzadeh Kasiri M, Naghibi S. Identifying the structure of pigments used in the context of manuscripts related to Safavid period. richt-kcr. 2019;2(1):1-12.
  22. Holakooei P, Karimy A-H, Saeidi-Anaraki F, Vaccaro C, Sabatini F, Degano I, Colombini MP. Colourants on the wall paintings of a mediӕval fortress at the mount Sofeh in Isfahan, central Iran. J Archaeol Sci: Reports. 2020;29:102065. https://doi.org/10.1016/j.jasrep. 2019. 102065
  23. Nikoei Z, Samanian K. Identification of green and red pigments used at mural painting of zandieh in shiraz by instrumental methods. J Color Sci Tech. 2020;14(1):49-61. https://dorl.net/dor/20.1001.1.17358779.1399.14.1.5.3 [in persian].
  24. Naghibi S, Bagherzadeh Kasiri M, editors. Identifying pigments used in historical manuscripts using analytical methods. 1st Iranian Applied Chemistry Seminar; 2016 22-23 August; Tabriz, Iran: Tabriz University.
  25. Noghani S, Modarresi P, Jafari R. Evaluation of different vermilion treatment methods presented in art treatises of the 16–17th Centuries. Honar-Ha-Ye-Ziba: Honar-Ha-Ye-Tajassomi. 2021;26(2):61-9. doi: https://doi.org/10.22059/ jfava.2021.303982.666491.
  26. Liu J-H, He Y, Ke W, Hwang M-c, Chen KY. Cinnabar use in Anyang of bronze age China: Study with micro-raman spectroscopy and X-ray fluorescence. J Archaeol Sci: Reports. 2022;43:103460. doi: https://doi.org/10.1016/j.jasrep. 2022. 103460.
  27. Schiavon N, Panganiban P, Valadas S, Bottaini C, Barrocas Dias C, Manhita A, Candeias A. A multi-analytical study of Egyptian funerary artifacts from three Portuguese museum collections. Heritage. 2021;4(4):2973-95. https://doi.org/10. 3390/ heritage4040166.
  28. Prieto G, Wright V, Burger RL, Cooke CA, Zeballos-Velasquez EL, Watanave A, et al. The source, processing and use of red pigment based on hematite and cinnabar at Gramalote, an early Initial Period (1500–1200 cal. BC) maritime community, north coast of Peru. J Archaeol Sci: Reports. 2016;5:45-60. https://doi.org/10.1016/j.jasrep.2015. 10.026.
  29. Argote DL, Torres G, Hernández-Padrón G, Ortega V, López-García PA, Castaño VM. Cinnabar, hematite and gypsum presence in mural paintings in Teotihuacan, Mexico. J Archaeol Sci: Reports. 2020;32:102375.
  30. Mioč U, Colomban P, Sagon G, Stojanović M, Rosić A. Ochre decor and cinnabar residues in Neolithic pottery from Vinča, Serbia. J. Raman Spectrosc. 2004;35(10):843-6. https://doi.org/10.1002/jrs.1221.
  31. Domingo I, García‐Borja P, Roldán C. Identification, processing and use of red pigments (hematite and cinnabar) in the Valencian Early Neolithic (Spain). Archaeom. 2012;54(5):868-92. https://doi.org/10.1111/j.1475-4754.2011. 00650.x.
  32. Rodanés-Vicente JM, Cuchí-Oterino JA, Minami T, Takahashi K, Martín-Gil J, Lorenzo-Lizalde JI, Martín-Ramos P. Use of cinnabar in funerary practices in the Central Pyrenees. Analysis of pigments on bones from the prehistoric burial of the Cueva de la Sierra cave in Campodarbe (Huesca, Spain). J. Archaeol. Sci. Rep. 2023;48:103849. http://dx.doi.org/10.1016/j.jasrep.2023.103849
  33. Minami T, Takeuchi A, Imazu S, Okuyama M, Higashikage Y, Mizuno T, et al. Identification of source mine using sulfur, mercury, and lead isotope analyses of vermilion used in three representative tombs from Kofun period in Japan. J. Archaeol. Sci. Rep. 2021;37:102970. https://doi.org/10.1016/j.jasrep. 2021.102970
  34. Cheilakou E, Troullinos M, Koui M. Identification of pigments on Byzantine wall paintings from Crete (14th century AD) using non-invasive Fiber Optics Diffuse Reflectance Spectroscopy (FORS). J Archaeol Sci. 2014; 41:541-55. https://doi.org/10.1016/j.jas.2013.09.020.
  35. Akyüz T, Akyüz S, Güleç A. Scientific face of the artwork: investigation of the pigments and plasters of the wall paints of some ottoman mosques by FTIR and EDXRF Techniques. Glob. J Humanit Soc Sci. 2016;3:75-80. http://dx.doi.org/ 10.18844/gjhss.v2i1.282.
  36. Martens W, Frost R, Kloprogge J, Edwards H. Where did the cinnabar from Herod's palace originate? Acta Univ. Carol., Geol. 2002;46(1):55-6.
  37. Dominguez-Vidal A, de la Torre-Lopez MJ, Rubio-Domene R. In situ noninvasive Raman microspectroscopic investigation of polychrome plasterworks in the Alhambra. Analyst. 2012;137(24):5763-9. https://doi.org/10.1039/ C2AN36027F.
  38. Botticelli M, Maras A, Candeias A. μ-Raman as a fundamental tool in the origin of natural or synthetic cinnabar: Preliminary data. J. Raman Spectrosc. 2020;51(9):1470-9. https://doi.org/10.1002/jrs.5733.
  39. Boschetti C, Corradi A, Baraldi P. Raman characterization of painted mortar in Republican Roman mosaics. J. Raman Spectrosc. 2008;39(8): 1085-90. https://doi.org/10.1002/ jrs.1970.
  40. Longo S, Capuani S, Granata F, Neri F, Fazio E. Clinical computed tomography and surface-enhanced Raman scattering characterisation of ancient pigments. Acta IMEKO. 2021;10(1):15-22.
  41. Rafiqi Hirawi M. Savad al-Khatt. In: Hirawi NM, editor. The art of bibliography in islamic civilization. Mashhad, Iran: Printing and Publishing Department of Astan Quds Razavi; 1993 p. 161-83.
  42. Hirawi MA. Midad al-Khotot. In: Hirawi NM, editor. The art of bibliography in islamic civilization. Mashhad, Iran: Printing and Publishing Department of Astan Quds Razavi; 1993. p. 87-103.
  43. Seyrafi. Golzare Safa. In: Hirawi NM, editor. The art of bibliography in islamic civilization. Mashhad, Iran: Printing and Publishing Department of Astan Quds Razavi; 1993. p.239-57.
  44. Rafiqi Hirawi M. Adab al-Mashq. In: Hirawi NM, editor. The art of bibliography in islamic civilization. Mashhad, Iran: Printing and Publishing Department of Astan Quds Razavi; 1993 p. 185-207.
  45. Afshar SB. Qanoon al-Sovar. In: Hirawi NM, editor. The Art of bibliography in islamic civilization. Mashhad, Iran: Printing and Publishing Department of Astan Quds Razavi; 1993. p. 344-56.
  46. Unknown. Hilyat al-Kottab. In: Hirawi NM, editor. The art of bibliography in islamic civilization. Mashhad, Iran: Printing and Publishing Department of Astan Quds Razavi; 1993. p. 499-505.
  47. Monshi Qomi QM-AISa-DH. Golestan-e Honar. Khansari AS, editor. Tehran, Iran: Manoochehri Publication; 2004.
  48. Unknown. Resaleh dar Bayane Sakhtane Morakkabe Alvan (a Chapter on Colorful Inks Making). In: Hirawi NM, editor. The art of bibliography in islamic civilization. Mashhad, Iran: Printing and Publishing Department of Astan Quds Razavi; 1993. p. 507-13.
  49. Unknown. Resale-ye Tala va Noghreh Va Hall Kardane Anha (a Chapter on Gold and Silver and their Color Making). In: Hirawi NM, editor. The art of bibliography in islamic civilization. Mashhad, Iran: Printing and Publishing Department of Astan Quds Razavi; 1993. p. 529-31.
  50. Hossaini A. Morakkab Sazi va Jeld Sazi (Ink Making and Bookbinding). In: Hirawi NM, editor. The art of bibliography in islamic civilization. Mashhad, Iran: Printing and Publishing Department of Astan Quds Razavi; 1993.
  51. Eastaugh N, Walsh V, Chaplin T, Siddall R. Pigment compendium: a dictionary of historical pigments: Routledge; 2007.
  52. Society IG. Refractive indices and double refraction values 2022 [Available from: https://www.gemsociety.org/article/ table-refractive-index-double-refraction-gems/.
  53. Cinnabar [Internet]. 2022 [cited 2023/06/24]. Available from: https://cameo.mfa.org/wiki/Cinnabar.
  54. Čiuladienė A, Luckutė A, Kiuberis J, Kareiva A. Investigation of the chemical composition of red pigments and binding media. Chemija. 2018;29(4). http://dx.doi.org/10.6001/ chemija.v29i4.3840.
  55. Edwards HG, Wolstenholme R, Wilkinson DS, Brooke C, Pepper M. Raman spectroscopic analysis of the enigmatic Comper pigments. Anal. Bioanal. Chem. 2007;387:2255-62. https://doi.org/10.1007/s00216-006-1113-y
  56. Frost R, Martens W, Kloprogge J. Raman spectroscopic study of cinnabar (HgS), realgar (As4S4), and orpiment (As2S3) at 298 and 77K. Neu Jb Mineral, Mh. 2002:469-80. https://doi.org/10.1127/0028-3649/2002/2002-0469.