بررسی سینتیک و ایزوترم جذب متیلن بلو از محلول آبی با استفاده از نانوکامپوزیت مغناطیسیPVA/AG/CuFe2O4

نوع مقاله : مقاله پژوهشی

نویسندگان

دانشگاه گیلان، دانشکده شیمی، رشت، ایران، صندوق پستی : 4193833697

چکیده

هدف از این پژوهش، سنتز یک جاذب جدید به منظور حذف رنگزای متیلن بلو از محلول در زمان کمتر بوده است. در ابتدا نانوذرات فریت مس با روش سولوترمال و نانو کامپوزیت مغناطیسی CuFe2O4/ PVA/AG با روش انجماد-ذوب و خشک کردن در دمای اتاق تهیه شدند. ساختار و ریخت‌شناسی نانو کامپوزیت مغناطیسی با استفاده از روش‌هایی مانند FTIR، XRD، SEM و EDX بررسی شد. جاذب CuFe2O4/ PVA/AG در شرایط بهینه 7=pH، زمان تماس60 دقیقه، مقدار جاذب mg 40 ، غلظت رنگزا  ppm5 و دمای °C 25 بررسی شد. بیشینه جذب و ظرفیت جذب به ترتیب برابر با 81.1 درصد و mg/g 14.93
به دست آمد. علاوه بر بررسی اثر بازیابی جاذب به منظور مقایسه، جاذب PVA/AG نیز در شرایط بهینه مذکور بررسی و بیشینه بازده حذف برای آن 63 درصد به دست آمد. در بررسی ایزوترم حالت تعادل حذف رنگزا تطابق خوبی با ایزوترم فروندلیچ دارد. سینتیک جذب سطحی بررسی شد و مشاهده گردید که فرآیند جذب بر روی نانو کامپوزیت مغناطیسی از معادلات سینتیکی شبه مرتبه دوم پیروی می‌کند. 

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Kinetic and Isotherm Investigations of Methylene Blue Adsorption from Aqueous Solution Using PVA/AG/CuFe2O4 Magnetic Nanocomposite

نویسندگان [English]

  • Roya Nayebi
  • Abdollah Fallah Shojaei
  • Maryam Pourjamal
Department of Chemistry, Faculty of Science, University of Guilan, P.O. Box: 4193833697, Rasht, Iran.
چکیده [English]

This research aims to synthesize a novel adsorbent and reduce the contact time in removing methylene blue dye. Copper ferrite nanoparticles were prepared by solvothermal method and CuFe2O4/PVA/AG magnetic nanocomposite by freeze-thaw method and drying at room temperature. The structure and morphology of magnetic nanocomposite were investigated using FTIR, XRD, SEM, and EDX methods. CuFe2O4/PVA/AG adsorbent under optimal conditions of pH = 7, contact time 60 min, amount of adsorbent 40 mg, dye concentration 5ppm and temperature 25 ᵒC was investigated. The maximum absorption and absorption capacity were obtained as 81.1 % and 14.93 mg/g, respectively. In addition to investigating the recovery effect of the adsorbent for comparison, the PVA/AG adsorbent was investigated under the aforementioned optimal conditions, and the maximum removal efficiency was 63.5 %. Examining the isotherm of the equilibrium state of dye removal matches well with the Freundlich isotherm. The kinetics of surface adsorption were investigated, and observed that the adsorption process on the magnetic nanocomposite follows pseudo-second-order kinetic equations.  

کلیدواژه‌ها [English]

  • Adsorption
  • Methylene blue
  • Isotherm
  • Kinetic
  • Nanocomposite
  • PVA/AG/ CuFe2O4
  1. Kodasma R, Palas B, Ersöz G, Atalay S. Photocatalytic activity of copper ferrite graphene oxide particles for an efficient catalytic degradation of Reactive Black 5 in water. Ceramics International. 2020;46(5):6284-92. https://doi.org/ 10.1016/j.ceramint.2019.11.100. 
  2. Liakos IL, Abdellatif MH, Innocenti C, Scarpellini A, Carzino R, Brunetti V, et al. Antimicrobial lemongrass essential oil—copper ferrite cellulose acetate nanocapsules. Molecules. 2016;21(4):520. https://doi.org/10.3390/molecules21040520.
  3. Foroutan R, Peighambardoust SJ, Esvandi Z, Khatooni H, Ramavandi B. Evaluation of two cationic dyes removal from aqueous environments using CNT/MgO/CuFe2O4 magnetic composite powder: A comparative study. J Environ Chem Eng. 2021;9(2):104752. https://doi.org/10.1016/j.jece. 2020.104752.
  4. Boushehrian MM, Esmaeili H, Foroutan R. Ultrasonic assisted synthesis of Kaolin/CuFe2O4 nanocomposite for removing cationic dyes from aqueous media. J Environ Chem Eng. 2020;8(4):103869. https://doi.org/10.1016/j.jece. 2020.103869.
  5. Othman I, Abu Haija M, Kannan P, Banat F. Adsorptive removal of methylene blue from water using high-performance alginate-based beads. Water, Air, & Soil Pollution. 2020;231:1-16. https://doi.org/10.1007/s11270-020-04751-3
  6. Fu Q, Shi D, Mo C, Lou J, Zhou S, Zha L, et al. Adsorption behavior of methylene blue on regenerable composite Cu-BTC@ AG. J Solid State Chem. 2022;311:123100. https://doi.org/10.1016/j.jssc.2022.123100
  7. Kamel Attar Kar M, Fazaeli R, Manteghi F, Ghahari M. Sol gel auto combustion synthesis of copper ferrite nanoparticles and study of adsorption isotherms in photocatalytic degradation of direct red 264. J Color Sci Tech. 2017; 11(4):297-304. https://dorl.net/dor 20.1001.1.17358779. 1396.11.4.7.0 [In persian].
  8. Zou L, Wang Q, Shen X, Wang Z, Jing M, Luo Z. Fabrication and dye removal performance of magnetic CuFe2O4@ CeO2 nanofibers. Appl Surf Sci. 2015;332:674-81. https://doi.org/ 10. 1016/ j.apsusc.2015.01.176
  9. Liao J, Wang Y, Hou B, Zhang J, Huang H. Nano-chitin reinforced agarose hydrogels: Effects of nano-chitin addition and acidic gas-phase coagulation. Carbohydrate Polym. 2023;313:120902. https://doi.org/10.1016/j.carbpol. 2023. 120902
  10. Gu J-L, Tong H-F, Sun L-Y. Preparation and preliminary evaluation of macroporous magnetic agarose particles for bioseparation. Biotechnol Bioprocess Eng. 2017;22:76-82. https://doi.org/10.1007/s12257-016-0511-z.
  11. Abebe B, HC AM, Zerefa E, Abdisa E. Porous PVA/Zn–Fe–Mn oxide nanocomposites: methylene blue dye adsorption studies. Mater Res Express. 2020;7(6):065002. https://doi.org/ 10.1088/2053-1591/ab94fc.
  12. Goodarzi R, Ghanbari H, Sarpoolaky H. An eco‐friendly polyvinyl alcohol/graphene oxide‐based hydrogel as a methylene blue adsorbent. Chemistry Select. 2022;7(12): e202200053. https://doi.org/10.1002/slct. 202200053.
  13. Niu Y, Han X, Song J, Huang L. Removal of methylene blue and lead (ii) via PVA/SA double-cross-linked network gel beads loaded with Fe3O4@ KHA nanoparticles. New J Chem. 2021;45(12):5605-20. https://doi.org/10. 1039/D1NJ00006C
  14. Samaddar P, Kumar S, Kim K-H. Polymer hydrogels and their applications toward sorptive removal of potential aqueous pollutants. Polym Reviews. 2019;59(3):418-64. https://doi.org/10.1080/15583724.2018.1548477
  15. Seow WY, Hauser CA. Freeze–dried agarose gels: A cheap, simple and recyclable adsorbent for the purification of methylene blue from industrial wastewater. J Environ Chem Eng. 2016;4(2):1714-21. https://doi.org/10.1016/j.jece. 2016. 02.013.
  16. Mahmoud G. A, Sayed A, Thabit, M, Safwat, G. Chitosan biopolymer based nanocomposite hydrogels for removal of methylene blue dye. SN Appl Sci. 2020; 2 (1), 1-10.  https://doi.org/10.1007/s42452-020-2753-9
  17. Salunkhe B, SchumanT. P. Super-adsorbent hydrogels for removal of methylene blue from aqueous solution: dye adsorption isotherms, kinetics, and thermodynamic properties. Macromol, (2021).1(4), 256-275. https://doi.org/10.3390/ macromol1040018.
  18. Mao H, Zuo Z, Yang N, Huang JS, Yan Y. A microfluidic colorimetric biosensor for chlorpyrifos determination based on peroxidase-like CuFe2O4/GQDs magnetic nanoparticles. J Residuals Sci Technol. 2017;14(1). https://doi.org/10.12783/ issn.1544-8053/11/1/30.
  19. Li H, Wu C-w, Wang S, Zhang W. Mechanically strong poly (vinyl alcohol) hydrogel with macropores and high porosity. Mater Lett. 2020;266:127504.https://doi.org/10.1016/j. matlet. 2020.127504.
  20. Heidari A, Moghimi H, Rashidiani J, Taheri R. Molecular development of silver nanoparticles-loaded poly acrylic acid hydrogel as a catalyst for dye degradation. Physical Chemistry Research. 2018;6(4):857-69. https://doi.org/10.22036/pcr. 2018. 145269.1528.
  21. Kabir S, Cueto R, Balamurugan S, Romeo LD, Kuttruff JT, Marx BD, et al. Removal of acid dyes from textile wastewaters using fish scales by absorption process. Clean Technol. 2019;1(1):311-24. https://doi.org/10.3390/clean technol1010021.
  22. Ariffin N, Abdullah MMAB, Zainol MRRMA, Murshed MF, Faris MA, Bayuaji R, editors. Review on adsorption of heavy metal in wastewater by using geopolymer. MATEC Web of Conferences; 2017: EDP Sciences. https://doi.org/10. 1051/ matecconf/20179701023. 
  23. Gulnaz O, Sahmurova A, Kama S. Removal of reactive red 198 from aqueous solution by Potamogeton crispus. Chem Eng J. 2011;174(2-3):579-85. https://doi.org/10.1016/j.cej. 2011.09.061.
  24. Amin NK. Removal of reactive dye from aqueous solutions by adsorption onto activated carbons prepared from sugarcane bagasse pith. Desalination. 2008;223(1-3):152-6. https://doi. org/10.1016/j.desal.2007.01.2031.
  25. Renault F, Morin-Crini N, Gimbert F, Badot P-M, Crini G. Cationized starch-based material as a new ion-exchanger adsorbent for the removal of CI Acid Blue 25 from aqueous solutions. Bioresour Technol. 2008;99(16):7573-86 . https://doi.org/10.1016/j.biortech.2008.02.011.
  26. Leyva-Ramos R, Bernal-Jacome L, Mendoza-Barron J, Hernandez-Orta M. Kinetic modeling of pentachlorophenol adsorption onto granular activated carbon. J Taiwan Inst Chem Eng. 2009;40(6):622-9. https://doi.org/10.1016/j. jtice.2009.05.006.
  27. Zeynizadeh B, Mohammad Aminzadeh F, Mousavi H. Green and convenient protocols for the efficient reduction of nitriles and nitro compounds to corresponding amines with NaBH 4 in water catalyzed by magnetically retrievable CuFe2O4 nanoparticles. Research on Chemical Intermediates. 2019; 45:3329-57. https://doi.org/10.1007/s11164-019-03794-4.
  28. Date P, Tanwar A, Ladage P, Kodam KM, Ottoor D. Biodegradable and biocompatible agarose–poly (vinyl alcohol) hydrogel for the in vitro investigation of ibuprofen release. Chemical Papers. 2020;74:1965-78. https://doi.org/ 10.1007/s11696-019-01046-8.
  29. Ni A, Lin P, Wang X, Fu D, Hua S, Pei D, et al. Facile preparation of high strength aerogel evaporator for efficient solar-driven water purification. Sustainable Materials and Technologies. 2022;32:e00443. https://doi.org/10.1016/j. susmat.2022.e00443.
  30. Parmekar MV, Salker A. An incredible magnetic Pd/CuFe 2 O 4 catalyst for low-temperature aqueous Suzuki-Miyaura coupling. Journal of Nanoparticle Research. 2019;21:1-10. https://doi.org/10.1007/s11051-019-4667-2.
  31. Turp SM, Turp GA, Ekinci N, Özdemir S. Enhanced adsorption of methylene blue from textile wastewater by using natural and artificial zeolite. Water Science and Technology. 2020;82(3):513-23. https://doi.org/10.2166/wst.2020.358. 
  32. Ai L, Li M, Li L. Adsorption of methylene blue from aqueous solution with activated carbon/cobalt ferrite/alginate composite beads: kinetics, isotherms, and thermodynamics. J Chem Eng Data. 2011;56(8):3475-83. https://doi.org/10. 1021/je200536h.
  33. El Qada EN, Allen SJ, Walker GM. Adsorption of basic dyes onto activated carbon using microcolumns. Industrial & engineering chemistry research. 2006;45(17):6044-9. https://doi.org/10.1021/ie060289e.
  34. Ghanizadeh G, Asgari G. Adsorption kinetics and isotherm of methylene blue and its removal from aqueous solution using bone charcoal. Reaction Kinetics, Mechanisms and Catalysis. 2011;102(1):127-42. https://doi.org/10.1007/s11144-010-0247-2.