بررسی عملکرد جاذب کربن فعال اصلاح‌شده با نانوذرات اکسید آهن در حذف کریستال ویولت از آب

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشکده مهندسی شیمی و نفت، دانشگاه تبریز، تبریز، ایران، صندوق پستی: 51666-16471

2 دانشکده مهندسی شیمی و مواد، دانشگاه صنعتی ییلدیز، استانبول، ترکیه، صندوق پستی: 5053594624

چکیده

در این مطالعه میزان جذب رنگ‌زای کریستال ویولت توسط جاذب کربن فعال مغناطیسی سنتز شده از منبع فراوان و کم هزینه سنجد بررسی شد. ابتدا زغال کربن از هسته و پوسته سنجد به صورت جداگانه تهیه شده و از دو عامل فعال­ساز اسیدی و بازی برای فعال کردن آن استفاده شد. کربن فعال سنتز شده در شرایط بهینه (استفاده از هسته سنجد و فعال­ساز اسیدی) با نشاندن نانوذرات اکسیدآهن روی سطح، اصلاح گردید. اثر مشخصه‌های مختلفی نظیر pH، دوز جاذب، زمان تماس، دما و غلظت رنگ‌زا، بر فرایند جذب کریستال ویولت بررسی شد. مقدار بیشینه ظرفیت جذب mg/g 91.743 در شرایط 8=pH، دوز جاذب  g/l0.5، زمان min 30، دمای oC 25 و غلظت اولیه mg/l 10 به دست آمد. بررسی ایزوترم­ها و سینتیک جذب، برازش بهتر داده­ها را با ایزوترم لانگمویر و سینتیک مرتبه دوم نشان داد. بررسی ترموینامیکی حاکی از فیزیکی و گرمازا بودن جذب و کاهش درجه خودبه­خودی در دماهای بالا بود. بررسی بازیابی جاذب توانایی بالای آن در استفاده مجدد طی چندین چرخه را تأیید نمود. 

کلیدواژه‌ها


عنوان مقاله [English]

Investigating the Performance of Activated Carbon Adsorbent Modified with Iron Oxide Nanoparticles in Removing Crystal Violet From Water

نویسندگان [English]

  • M. Chaharkam 1
  • M. Tahmasebpoor 1
  • M. Sari Yilmaz 2
1 Faculty of Chemical and Petroleum Engineering, University of Tabriz, P.O.Box: 16471-51666, Tabriz, Iran
2 Faculty of Chemical and Metallurgical Engineering, Yildiz Technical University, P.O.Box: 5053594624, Istanbul, Türkiye
چکیده [English]

This study investigated the adsorption of crystal violet by magnetic active carbon adsorbent synthesized from the abundant and low-cost Oleaster source. Carbon charcoal was first prepared from the seed and peal of Oleaster, and two different acidic and basic activating agents were used to activate it. Activated carbon synthesized under optimal conditions (using Oleaster seed and acidic activator) was modified by placing iron oxide nanoparticles on the surface. Effects of various parameters, including pH, adsorbent dose, contact time, temperature, and dye concentration, on the adsorption process of crystal violet were investigated. The maximum adsorption capacity was obtained as 91.7431 mg/g under pH=8, adsorbent dose 0.5 g/l, time 30 min, temperature 25 oC, and initial concentration 10 mg/l. Examining isotherms and adsorption kinetics showed a better data fit with Langmuir isotherm and second-order kinetics. Thermodynamic investigation indicated the physical and exothermic nature of adsorption and spontaneous degree reduction at high temperatures. The adsorbent regeneration tests confirmed its high ability to be reused during consecutive cycles.

کلیدواژه‌ها [English]

  • Adsorption
  • Magnetic activated carbon
  • Oleaster
  • Water pollution
  • Crystal violet
  1. Lu T, Xiang T, Huang X-L, Li C, Zhao W-F, Zhang Q, Zhao C-S. Post-crosslinking towards stimuli-responsive sodium alginate beads for the removal of dye and heavy metals. Carbohydr Polym. 2015;133:587-95. https://doi.org/10.1016/ j.carbpol.2015.07.048.
  2. Benkaddour S, Slimani R, Hiyane H, El Ouahabi I, Hachoumi I, El Antri S, Lazar S. Removal of reactive yellow 145 by adsorption onto treated watermelon seeds: kinetic and isotherm studies. Sustainable Chem Pharm. 2018;10:16-21. https://doi.org/10.1016/j.scp.2018.08.003.
  3. Zainol Abidin NA. Activated Carbon-Limestone-Alginate beads for the simultaneous removal of color and turbidity of Kerian River. Int J Integr Eng. 2019;11(2). https://doi.org/ 10.30880/ijie.2019. 11.02.004
  4. Amina A, Khodja HD, Zaghouane-Boudiaf H. Textile dyes removal from wastewater using recent promising composites: A review. Algerian J Chem Eng AJCE. 2021;1(2):49-65. https://doi.org/10.5281/zenodo.5451774.
  5. Dutta S, Gupta B, Srivastava SK, Gupta AK. Recent advances on the removal of dyes from wastewater using various adsorbents: a critical review. Mater Adv. 2021;2(14):4497-531. https://doi.org/10.1039/D1MA00354B
  6. Bayomie OS, Kandeel H, Shoeib T, Yang H, Youssef N, El-Sayed MM. Novel approach for effective removal of methylene blue dye from water using fava bean peel waste. Sci Rep. 2020;10(1):7824. https://doi.org/10.1038/ s41598-020-64727-5.
  7. Salah omer A, A.El Naeem G, Abd-Elhamid AI, O.M. Farahat O, A. El-Bardan A, M.A. Soliman H, Nayl AA. Adsorption of crystal violet and methylene blue dyes using a cellulose-based adsorbent from sugercane bagasse: characterization, kinetic and isotherm studies. J Mater Res Technol. 2022;19:3241-54. https://doi.org/10.1016/j.jmrt. 2022.06.045.
  8. P. Satheesh Kumar SS, Dr. N. Jayakumar Removal of Methylene Blue dye from aqueous solutions using Lagerstroemia indica seed (LIS) activated carbon International J Mater Sci. 2017;12:107-16.
  9. Prasad R, Yadav KD. Optimisation of crystal violet and methylene blue dye removal from aqueous solution onto water hyacinth using RSM. Pollution. 2021;7(4):799-814. https://doi.org/10.22059/POLL.2021.322778.1072.
  10. Pooladi H, Foroutan R, Esmaeili H. Synthesis of wheat bran sawdust/Fe(3)O(4) composite for the removal of methylene blue and methyl violet. Environ Monit Assess. 2021;193(5):276. https://doi.org/10.1007/s10661-021-09051-9
  11. Ohemeng-Boahen G, Sewu DD, Woo SH. Preparation and characterization of alginate-kelp biochar composite hydrogel bead for dye removal. Environ Sci Pollut Res. 2019;26:33030-42. https://doi.org/10.1007/s11356-019-06421-2.
  12. Arora C, Sahu D, Bharti D, Tamrakar V, Soni S, Sharma S. Adsorption of hazardous dye crystal violet from industrial waste using low-cost adsorbent Chenopodium album. Desalin water Treat. 2019;167:324-32. https://doi.org/10.5004/dwt. 2019.24595.
  13. Ayed L, Chaieb K, Cheref A, Bakhrouf A. Biodegradation of triphenylmethane dye Malachite Green by Sphingomonas paucimobilis. World J Microbiol Biotechnol. 2009;25(4):705-11. https://doi.org/10.1007/ s11274-008-9941-x
  14. Oloo CM, Onyari JM, Wanyonyi WC, Wabomba JN, Muinde VM. Adsorptive removal of hazardous crystal violet dye form aqueous solution using Rhizophora mucronata stem-barks: Equilibrium and kinetics studies. Environ Chem Ecotoxicol. 2020;2:64-72. https://doi.org/10.1016/ j.enceco.2020.05.001.
  15. Bertolini TC, Izidoro JC, Magdalena CP, Fungaro DA. Adsorption of crystal violet dye from aqueous solution onto zeolites from coal fly and bottom ashes. Orbital: Electro J Chem. 2014;5(3). https://doi.org/ 10.17807/orbital.v5i3.488
  16. Badeenezhad A, Azhdarpoor A. Efficiency of the activated carbon and clinoptilolite particles coated with iron oxide magnetic nanoparticles in removal of methylene blue. Desalin Water Treat. 2019;154:347-55. https://doi.org/10.5004/dwt. 2019.24039.
  17. Puri C, Sumana G. Highly effective adsorption of crystal violet dye from contaminated water using graphene oxide intercalated montmorillonite nanocomposite. Appl Clay Sci. 2018;166:102-12. https://doi.org/10.1016/j.clay. 2018.09.012.
  18. Noori M, Tahmasebpoor M. Simultaneous removal of methylene blue and crystal violet dyes from aqueous solutions using magnetic granular adsorbent based on Clinoptilolite/Alginate. J Color Sci Tech. 2023;17(1):33-50. https://dorl.net/dor/20.1001.1.17358779. 1402.17.1.3.2. [In Persian]
  19. Bagheri AR, Ghaedi M, Asfaram A, Hajati S, Ghaedi AM, Bazrafshan A, Rahimi MR. Modeling and optimization of simultaneous removal of ternary dyes onto copper sulfide nanoparticles loaded on activated carbon using second-derivative spectrophotometry. J Taiwan Inst Chem Eng. 2016;65:212-24. https://doi.org/ 10.1016/j.jtice.2016.05.004.
  20. Ma CM, Hong GB, Wang YK. Performance evaluation and optimization of dyes removal using rice bran-based magnetic composite adsorbent. Mater. 2020;13(12):2764. https://doi. org/10.3390/ma13122764.
  21. Debnath S, Ballav N, Maity A, Pillay K. Competitive adsorption of ternary dye mixture using pine cone powder modified with β-cyclodextrin. J Mol Liq. 2017;225:679-88. https://doi.org/10.1016/j.molliq.2016.10.109.
  22. Zayed AM, Metwally BS, Masoud MA, Mubarak MF, Shendy H, Petrounias P, Abdel Wahed MSM. Facile synthesis of eco-friendly activated carbon from leaves of sugar beet waste as a superior nonconventional adsorbent for anionic and cationic dyes from aqueous solutions. Arabian J Chem. 2023;16(8):104900. https://doi.org/10.1016/j. arabjc.2023. 104900
  23. Jawad AH, Razuan R, Appaturi JN, Wilson LD. Adsorption and mechanism study for methylene blue dye removal with carbonized watermelon (Citrullus lanatus) rind prepared via one-step liquid phase H2SO4 activation. Surf Interfaces. 2019;16:76-84. https://doi.org/10.1016/j.surfin. 2019.04.012.
  24. Al-Shehri HS, Almudaifer E, Alorabi AQ, Alanazi HS, Alkorbi AS, Alharthi FA. Effective adsorption of crystal violet from aqueous solutions with effective adsorbent: equilibrium, mechanism studies and modeling analysis. Environ Pollut Bioavailability. 2021; 33(1):214-26.https://doi. org/10.1080/26395940. 2021. 1960199.
  25. Vyavahare G, Jadhav P, Jadhav J, Patil R, Aware C, Patil D, et al. Strategies for crystal violet dye sorption on biochar derived from mango leaves and evaluation of residual dye toxicity. J Cleaner Prod. 2019;207:296-305. https://doi.org/10. 1016/j.jclepro.2018.09.193.
  26. Ahmed Mohammed Abbas FHA, Walaa Jubair Sabbar, Rusul Abdul Salam Faraj. Adsorption of dyes by activated carbon surfaces were prepared from plant residues: Review. J Mater Environ Sci. 2020;22(12):2007-15.
  27. Khangwichian W, Pattamasewe S, Leesing R, Knijnenburg JTN, Ngernyen Y. Adsorption of cationic dye on activated carbon from hydrolyzed Dipterocarpus alatus leaves: Waste from biodiesel production. Eng Appl Sci Res. 2022;49(4):531-44. https://doi.org/10.14456/easr. 2022.52.
  28. Nizam NUM, Hanafiah MM, Mahmoudi E, Halim AA, Mohammad AW. The removal of anionic and cationic dyes from an aqueous solution using biomass-based activated carbon. Sci Rep. 2021;11(1):8623. https://doi.org/10.1038/ s41598-021-88084-z.
  29. Praipipat P, Ngamsurach P, Kosumphan S, Mokkarat J. Powdered and beaded sawdust materials modified iron (III) oxide-hydroxide for adsorption of lead (II) ion and reactive blue 4 dye. Sci Rep. 2023;13(1):531. https://doi.org/10. 1038/s41598-023-27789-9.
  30. Mirzapour P, Kamyab Moghadas B, Tamjidi S, Esmaeili H. Activated carbon/bentonite/Fe3O4 nanocomposite for treatment of wastewater containing Reactive Red 198. Sep Sci Technol. 2021;56(16):2693-707. https://doi.org/10.1080/ 01496395. 2020.1843051.
  31. Noori M, Tahmasebpoor M. Novel low-cost magnetic clinoptilolite powders/granules for the removal of crystal violet in single and binary systems. Iranian J Chem Chem Eng. 2023. https://doi.org/10.30492/IJCCE.2023.1978057. 5746.
  32. Tahmasebpoor M, Hosseini Nami S, Khatamian M, Sanaei L. Arsenate removal from contaminated water using Fe2O3-clinoptilolite powder and granule. Environ Technol. 2022;43(1):116-30.https://doi.org/10.1080/09593330. 2020. 1779821.
  33. Ren Z, Yang X, Zhang W, Zhao Z. Preparation, characterization and performance of a novel magnetic Fe-Zn activated carbon for efficient removal of dyes from wastewater. J Mol Struct. 2023;1274:134407.https://doi.org/ 10.1016/j.molstruc.2022.134407.
  34. Lestari I, Kurniawan E, Gusti DR, Yusnelti. Magnetite Fe3O4-activated carbon composite as adsorbent of rhodamine B dye. IOP Conference Series: Earth Environ Sci. 2020;483(1): 012046. https://doi.org/10.1088/1755-1315/483/1/012046.
  35. Jiang W, Zhang L, Guo X, Yang M, Lu Y, Wang Y, et al. Adsorption of cationic dye from water using an iron oxide/activated carbon magnetic composites prepared from sugarcane bagasse by microwave method. Environ Technol. 2021;42(3):337-50. https://doi.org/10.1080/ 09593330.2019. 1627425.
  36. Abdel-Ghani NT, El-Chaghaby GA, Rawash E-SA, Lima EC. Magnetic activated carbon nanocomposite from Nigella sativa L. waste (MNSA) for the removal of Coomassie brilliant blue dye from aqueous solution: Statistical design of experiments for optimization of the adsorption conditions. J Adv Res. 2019;17:55-63. https://doi.org/ 10.1016/ j.jare.2018.12.004.
  37. Nassar M, Abdelrahman E, Ahmed A, Mohamed T. A facile synthesis of mordenite zeolite nanostructures for efficient bleaching of crude soybean oil and removal of methylene blue dye from aqueous media. J Mol Liq. 2017;248:302-313.https://doi.org/10.1016/j.molliq.2017. 10.061.
  38. Mohamed SK, Hegazy SH, Abdelwahab NA, Ramadan AM. Coupled adsorption-photocatalytic degradation of crystal violet under sunlight using chemically synthesized grafted sodium alginate/ZnO/graphene oxide composite. International J Biol Macromol. 2018;108:1185-98.
  39. Foroutan R, Peighambardoust SJ, Peighambardoust SH, Pateiro M, Lorenzo JM. Adsorption of Crystal Violet dye using activated carbon of lemon wood and activated carbon/Fe3O4 magnetic nanocomposite from aqueous solutions: A kinetic, equilibrium and thermodynamic study. Mol. 2021;26(8):2241. https://doi.org/10.3390/molecules 26082241.
  40. Li X, Lu H, Zhang Y, He F, Jing L, He X. Fabrication of magnetic alginate beads with uniform dispersion of CoFe2O4 by the polydopamine surface functionalization for organic pollutants removal. Appl Surf Sci. 2016;389:567-77. https://doi.org/10.1016/j.apsusc.2016.07.162.
  41. Ramutshatsha-Makhwedzha D, Mavhungu A, Moropeng ML, Mbaya R. Activated carbon derived from waste orange and lemon peels for the adsorption of methyl orange and methylene blue dyes from wastewater. Heliyon. 2022;8(8):e09930. https://doi.org/10.1016/ j.heliyon.2022. e09930.
  42. Kundu S, Naskar MK. Carbon-layered double hydroxide nanocomposite for efficient removal of inorganic and organic based water contaminants-unravelling the adsorption mechanism. Mater Adv. 2021;2(11):3600-12. https://doi.org/ 10.1039/D1MA00064K.
  43. Hwang N, Barron AR. BET surface area analysis of nanoparticles. The connexions project. 2011:1-11.
  44. Crini G. Recent developments in polysaccharide-based materials used as adsorbents in wastewater treatment. Prog Polym Sci. 2005;30(1):38-70. https://doi.org/10.1016/j. progpolymsci.2004.11.002.
  45. Heibati B, Rodriguez-Couto S, Al-Ghouti MA, Asif M, Tyagi I, Agarwal S, Gupta VK. Kinetics and thermodynamics of enhanced adsorption of the dye AR 18 using activated carbons prepared from walnut and poplar woods. J Mol Liq. 2015;208:99-105.https://doi.org/10.1016/j.molliq. 2015.03. 057.
  46. Sulyman M, Kucinska-Lipka J, Sienkiewicz M, Gierak A. Development, characterization and evaluation of composite adsorbent for the adsorption of crystal violet from aqueous solution: Isotherm, kinetics, and thermodynamic studies. Arabian J Chem. 2021;14(5):103115. https://doi.org/10.1016/ j.arabjc.2021.103115.
  47. Alver E, Metin AÜ, Brouers F. Methylene blue adsorption on magnetic alginate/rice husk bio-composite. Int J Biol Macromol. 2020;154(10):104-13. https://doi.org/10.1016/ j.ijbiomac.2020.02.330.
  48. Pathania D, Sharma S, Singh P. Removal of methylene blue by adsorption onto activated carbon developed from Ficus carica bast. Arabian J Chem. 2017;10:S1445-S51. https://doi. org/ 10.1016/j.arabjc.2013.04.021.
  49. Elsherif K, El-Dali A, Ewlad-Ahmed A, Treban A, Alkarewi A. Adsorption of crystal violet dye onto olive leaves powder: Equilibrium and kinetic studies. Chem Int. 2021;7(2):79-89. https://doi.org/10.5281/zenodo.4441851.
  50. Mouni L, Belkhiri L, Bollinger J-C, Bouzaza A, Assadi A, Tirri A, et al. Removal of Methylene Blue from aqueous solutions by adsorption on Kaolin: Kinetic and equilibrium studies. Appl Clay Sci. 2018;153:38-45. https://doi.org/10. 1016/j.clay.2017.11.034.
  51. Tahmasebpoor M, Sanaei L, noori m. Efficiency of magnetic granular adsorbent based on natural zeolite/chitosan in removing arsenic from polluted water. Iranian J Polym Sci Technol. 2022;35(4):367-79. https://doi.org/22063/JIPST. 2022.3205.216910. [In Persian]
  52. Kurczewska J, Cegłowski M, Schroeder G. Alginate/ PAMAM dendrimer–halloysite beads for removal of cationic and anionic dyes. Int J Biol Macromol. 2019;123: 398-408. https://doi.org/10.1016/j.ijbiomac.2018.11.119.
  53. Asif Tahir M, Bhatti HN, Iqbal M. Solar Red and Brittle Blue direct dyes adsorption onto Eucalyptus angophoroides bark: Equilibrium, kinetics and thermodynamic studies. J Environ Chem Eng. 2016;4(2):2431-9. https://doi.org/10.1016/j.jece. 2016.04.020.
  54. Siddiqui SH. The removal of Cu2+, Ni2+ and Methylene Blue (MB) from aqueous solution using Luffa Actangula Carbon: Kinetics, thermodynamic and isotherm and response methodology. Groundwater for Sustainable Development. 2018;6:141-9. https://doi.org/10.1016/j.gsd.2017.12.008.
  55. Nanthamathee C, Dechatiwongse P. Kinetic and thermodynamic studies of neutral dye removal from water using zirconium metal-organic framework analogues. Mater Chem Phys. 2021;258:123924. https://doi.org/10.1016/j. matchemphys.2020.123924
  56. Onal Y, Akmil-Başar C, Sarici-Ozdemir C. Elucidation of the naproxen sodium adsorption onto activated carbon prepared from waste apricot: kinetic, equilibrium and thermodynamic characterization. J Hazard Mater. 2007;148(3):727-34. https://doi.org/10.1016/j.jhazmat.2007.03.037.
  57. Chaari I, Medhioub M, Jamoussi F, Hamzaoui A. Acid-treated clay materials (Southwestern Tunisia) for removing sodium leuco-vat dye: Characterization, adsorption study and activation mechanism. J Mol Struct. 2020;1223:128944. https://doi.org/10.1016/j.molstruc.2020.128944
  58. Mahdavinia GR, Iravani S, Zoroufi S, Hosseinzadeh H. Magnetic and K+-cross-linked kappa-carrageenan nano-composite beads and adsorption of crystal violet. Iranian Polym J. 2014;23(5):335-44. https://doi.org/10.1007/s13726-014-0229-8.
  59. Mahdavinia GR, Aghaie H, Sheykhloie H, Vardini MT, Etemadi H. Synthesis of CarAlg/MMt nanocomposite hydrogels and adsorption of cationic crystal violet. Carbohydr Polym. 2013;98(1):358-65. https://doi.org/10.1016/j.carbpol. 2013.05.096.
  60. Chakraborty S, Chowdhury S, Das Saha P. Adsorption of Crystal Violet from aqueous solution onto NaOH-modified rice husk. Carbohydr Polym. 2011;86(4):1533-41. https://doi.org/10.1016/j.carbpol.2011.06.058.
  61. Djelad A, Mokhtar A, Khelifa A, Bengueddach A, Sassi M. Alginate-whey an effective and green adsorbent for crystal violet removal: Kinetic, thermodynamic and mechanism studies. Int J Biol Macromol. 2019;139(1):944-54. https://doi. org/10.1016/j.ijbiomac.2019.08.068.
  62. Noori M, Tahmasebpoor M, Hosseini Nami S. Adsorption removal of crystal violet in single and binary systems onto low-cost iron oxide nanoparticles coated clinoptilolite powders/granules2022. https://doi.org/10.21203/rs.3.rs-1727993/v1.
  63. Senthilkumaar S, Kalaamani P, Subburaam CV. Liquid phase adsorption of Crystal violet onto activated carbons derived from male flowers of coconut tree. J Hazard Mater. 2006;136(3):800-8.https://doi.org/10.1016/j.jhazmat. 2006.01. 045.
  64. El-Sayed GO. Removal of methylene blue and crystal violet from aqueous solutions by palm kernel fiber. Desalination. 2011;272(1):225-32.https://doi.org/10.1016/j.desal.2011.01. 025.
  65. Khanam N, Uddin MT, Islam MA. Adsorptive removal of Crystal Violet by Banyan leaf powder: Batch and Column Study. International Conference on Engineering Research, Innovation and Education 2017. https://www.researchgate. net/publication/328127055.
  66. Saha PD, Chakraborty S, Chowdhury S. Batch and continuous (fixed-bed column) biosorption of crystal violet by Artocarpus heterophyllus (jackfruit) leaf powder. Colloids Surf B Biointerfaces. 2012;92:262-70. https://doi.org/10.1016/ j. colsurfb.2011.11.057.
  67. Purushothaman M, Niwas R, Pugazhenthi G. Utilization of ball clay adsorbents for the removal of crystal violet dye from aqueous solution. Clean Technologies and Environmental Policy. 2011;13(1):141-51. https://doi.org/10.1007/s10098-010-0292-6.
  68. Malarvizhi R, Ho Y-S. The influence of pH and the structure of the dye molecules on adsorption isotherm modeling using activated carbon. Desalination. 2010;264(1):97-101. https://doi.org/10.1016/j.desal.2010.07.010.
  69. Mohamed SK, Hegazy SH, Abdelwahab NA, Ramadan AM. Coupled adsorption-photocatalytic degradation of crystal violet under sunlight using chemically synthesized grafted sodium alginate/ZnO/graphene oxide composite. Int J Biol Macromol. 2018;108:1185-98. https://doi.org/10.1016/j. ijbiomac.2017.11.028.
  70. Al-wakeel K, El-Bindary A, El-Sonbati A, Hawas AR. Magnetic alginate beads with high basic dye removal potential and excellent regeneration ability. Canadian J Chem. 2017;95(8):807-15. https://doi.org/10.1139/cjc-2016-0641.
  71. Chakraborty S, Chowdhury S, Saha PD. Insight into biosorption equilibrium, kinetics and thermodynamics of crystal violet onto Ananas comosus (pineapple) leaf powder. Appl Water Sci. 2012;2(2):135-41. https://doi.org/10. 1007/s13201-012-0030-9.
  72. Ali I, Peng C, Khan ZM, Sultan M, Naz I. Green synthesis of phytogenic magnetic nanoparticles and their applications in the adsorptive removal of crystal violet from aqueous solution. Arabian J Sci Eng. 2018;43(11):6245-59. https://doi. org/10.1007/s13369-018-3441-6.
  73. Kannan C, Buvaneswari N, Thayumanavan P. Removal of plant poisoning dyes by adsorption on tomato plant root and green carbon from aqueous solution and its recovery. Desalin. 2009;249. https://doi.org/10.1016/j.desal.2009. 06.042.
  74. Druzian SP, Zanatta NP, Côrtes LN, Streit AFM, Dotto GL. Preparation of chitin nanowhiskers and its application for crystal violet dye removal from wastewaters. Environ Sci Pollut Res. 2019;26(28):28548-57. https://doi.org/10.1007/ s11356-018-3547-0.
  75. Amin MT, Alazba AA, Shafiq M. Successful application of eucalyptus camdulensis biochar in the batch adsorption of crystal violet and methylene blue dyes from aqueous solution. Sustainability. 2021;13(7):3600. https://doi.org/ 10.3390/ su13073600.
  76. Athari MJ, Tahmasebpoor M. Experimental study on the crystal violet dye removal from water using activated carbon prepared from oleaster seed and peel. J Color Sci Tech. 2023;16(4):325-41. https://dorl.net/dor/ 20.1001.1. 17358779. 1401.16.4.4.2. [In Persian] 
  77. Dil EA, Ghaedi M, Asfaram A. The performance of nanorods material as adsorbent for removal of azo dyes and heavy metal ions: Application of ultrasound wave, optimization and modeling. Ultrason Sonochem. 2017;34:792-802. https://doi. org/10.1016/j.ultsonch.2016.07.015.
  78. Chaharkam M, Tahmasebpoor M. Preparation of a new adsorbent film based on magnetic activated carbon/ alginate and evaluation of its efficiency in crystal violet removal from water. J Color Sci Tech. 2023;17(2):169-88. https://dorl.net/ dor/ 20.1001. 1.17358779.1402.17.2.6.7. [In Persian]
  79. Khan TA, Khan EA, Shahjahan. Removal of basic dyes from aqueous solution by adsorption onto binary iron-manganese oxide coated kaolinite: Non-linear isotherm and kinetics modeling. Appl Clay Sci. 2015;107. https://doi.org/10.1016/j clay.2015.01.005.
  80. Homagai PL, Poudel R, Poudel S, Bhattarai A. Adsorption and removal of crystal violet dye from aqueous solution by modified rice husk. Heliyon. 2022;8(4):e09261. https://doi. org/ 10.1016/j.heliyon.2022.e09261.
  81. Islam T, Liu J, Shen G, Ye T, Peng C. Synthesis of chemically modified carbon embedded silica and zeolite from rice husk to adsorb crystal violet dye from aqueous solution. Appl Ecology Environ Res. 2018;16(4):3955-67. https://doi.org/10.15666/ aeer/1604_39553967.
  82. Sarvalkar PD, Vadanagekar AS, Karvekar OS, Kumbhar PD, Terdale SS, Thounaojam AS, et al. Thermodynamics of azo dye adsorption on a newly synthesized titania-doped silica aerogel by cogelation: A comparative investigation with silica aerogels and activated charcoal. ACS Omega. 2023;8(14):13285-99.https://doi.org/10.1021/acsomega. 3c00552.
  83. Ahmad R, Ansari K. Polyacrylamide-Grafted Actinidia deliciosa peels powder (PGADP) for the sequestration of crystal violet dye: isotherms, kinetics and thermodynamic studies. Appl Water Sci. 2020;10(8):195. https://doi.org/10. 1007/s13201-020-01263-7.
  84. Yusuff AS, Ajayi OA, Popoola LT. Application of Taguchi design approach to parametric optimization of adsorption of crystal violet dye by activated carbon from poultry litter. Sci African. 2021;13(3):e00850. https://doi.org/10.1016/j. sciaf. 2021.e00850.