کاهش رنگ‌زای آزوی کارموزین از پساب سنتزی مرحله آهارگیری توسط کلبسیلا کوازیپنومونیه GT7

نوع مقاله : مقاله پژوهشی

نویسندگان

1 گروه مهندسی شیمی، دانشگاه آزاد اسلامی، واحد علوم و تحقیقات تهران، تهران، ایران، صندوق‌پستی: 775/14515

2 پژوهشکده زیست فناوری صنعت و محیط زیست، پژوهشگاه ملی مهندسی ژنتیک و زیست فناوری، تهران، ایران. صندوق‌پستی: 161/14965

چکیده

حذف رنگ‌زای آزوی کارموزین از محیط پساب سنتزی رنگی که حاوی نشاسته­ بوده و دارای ترکیبی مشابه با خروجی از مرحله آهارگیری بود، توسط باکتری کلبسیلا کوازیپنومونیهGT7 بررسی شد. سنجش غلظت رنگ توسط طیف‌سنجی و اندازه­گیری غلظت نشاسته با استفاده از روش آنترون، نشان داد که انجام فرایند به صورت بی­هوازی در دمای 30 درجه سانتی‌گراد و 7pH ، وقتی که غلظت اولیه کارموزین 50 میلی­گرم بر لیتر می­باشد، طی 48­ساعت منجر به کاهش حدود 96 درصد از غلظت اولیه رنگ‌زا شده است. این، توام با کاهش 30 تا 35 درصد از غلظت اولیه نشاسته (1870 میلی­گرم بر لیتر) بوده است. کروماتوگرافی لایه نازک(TLC) نشان داد که باکتری­ها، رنگ کارموزین حذف شده طی فرایند بی‌هوازی را به آمین­های آروماتیکی سازنده آن تجزیه نموده­اند. ادامه فرایند
به صورت هوازی، با و بدون انجام تلقیح مجدد باکتری­ها در آغاز مرحله هوازی، نشان داد که تا 23روز، شکست ملکول­های آمین آروماتیکی صورت نگرفته و کاهش قابل توجهی در مقدار رنگ یا نشاسته باقی‌مانده از مرحله بی­هوازی، ایجاد نشده است.

کلیدواژه‌ها


عنوان مقاله [English]

The Reduction of Azo Dye Carmoisine from Synthetic Desizing Stage Effluent by Klebsiella quasipneumoniae GT7

نویسندگان [English]

  • Iman Khakbaz 1
  • Tayebe Bagheri Lotfabad 2
  • Amir Heydarinasab 1
  • Pedram Hasanvand 2
1 Department of Chemical Engineering, Science and Research branch, Islamic Azad University, Tehran, Iran
2 Department of Industrial and Environmental Biotechnology, National Institute of Genetic Engineering and Biotechnology (NIGEB), Tehran, Iran
چکیده [English]

The removal of the azo dye carmoisine from a synthetic dye wastewater medium, which contained starch and had a similar composition to the effluent from the de-sizing stage, was investigated by Klebsiella quasipneumoniae GT7. The measurements of dye concentration by spectrophotometry and starch concentration by the Anthrone method revealed that the anaerobic process at a temperature of 30 °C and pH 7, with an initial concentration of 50 mg/l of carmoisine, resulted in a decrease of approximately 96 % in the initial dye concentration within 48h. This was accompanied by a decrease of approximately 30 to 35 % in the initial starch concentration (1870 mg/l). Thin layer chromatography (TLC) showed that the bacteria degraded the carmoisine dye, which was removed during the anaerobic process, into its constituent aromatic amines. The continuation of the process under aerobic conditions, with and without re-inoculation of bacteria at the beginning of the aerobic stage, revealed that until day 23, aromatic amine molecules were not degraded and there was no significant reduction in the amount of dye or starch remaining from the anaerobic stage.

کلیدواژه‌ها [English]

  • Dye removal
  • Klebsiella
  • Carmoisine
  • Starch
  • Desizing
  1. Ahmed DN, Naji LA, Faisal AAH, Al-Ansari N, Naushad Mu. Waste foundry sand/MgFe-layered double hydroxides composite material for efficient removal of Congo red dye from aqueous solution. Sci Rep. 2020; 10(1):2042. https://doi.org/10.1038/s41598-020-58866-y. 
  2. Noori M, Tahmasebpoor M. Simultaneous Removal of Methylene Blue and Crystal Violet Dyes from Aqueous Solutions Using Magnetic Granular Adsorbent Based on Clinoptilolite/Alginate. J Color Sci Tech. 2023; 17(1): 33-50. https://dor.net/dor/20.1001.1.17358779.1402.17. 1.3.2 [In Persian].
  3. Moradi O, Maraghe S, Arab-Salmanabadi S. Removal of Safranin Dye Using Graphene Oxide, Activated Carbon Nanocomposites, Aluminum Hydroxide and Oxide Graphene Nanoparticles, Activated Carbon and Cerium Oxide Nanoparticles. J Color Sci Tech. 2022; 16(1): 39-56. https://dorl.net/dor/20.1001.1.17358779. 1401.16.1.4.6 [In Persian] 
  4. Vatandoostarani S, Bagheri Lotfabad T, Heidarinasab A, Yaghmaei S. Degradation of azo dye methyl red by Saccharomyces cerevisiae ATCC 9763. Int Biodeterior Biodegrad. 2017;125:62–72. https://doi.org/10.1016/j. ibiod.2017.08.009.
  5. Shi B, Li G, Wang D, Feng C, Tang H. Removal of direct dyes by coagulation: The performance of preformed polymeric aluminum species. J Hazard Mater. 2007;143(1–2):567–574.https://doi.org/10. 1016 /j.jhazmat.2006.09.076
  6. Dos Santos AB, Cervantes FJ, Van Lier JB. Review paper on current technologies for decolourisation of textile wastewaters: Perspectives for anaerobic biotechnology. Bioresour Technol. 2007;98(12):2369–85. https://doi.org/10.1016/j.biortech.2006.11.013.
  7. Pourmoheb Hosseini SM, Chaibakhsh N. Effective Removal of Acid Blue 113 Dye from Industrial Effluents Using Natural Coagulant and Fe3O4/MnO2 in Coagulation/Ozonation Combined Treatment System. J Color Sci Tech. 2022;16(3):211-223. https://dorl.net/ dor/ 20.1001.1.17358779.1401.16.3.4.0  [In Persian].
  8. Mishra S, Maiti A. Applicability of enzymes produced from different biotic species for biodegradation of textile dyes. Clean Techn Environ Policy. 2019;21(4):763–81. https://doi.org/10.1007/s10098-019 -01681-5.
  9. Saberi Z, Sharifi S, Makhdoumi A, Asadi E, Alizadeh K. Study of Bio-decolorization of Xanthene Dyes Using Spore Laccase Based on Laser Spectroscopy. J Color Sci Tech. 2021; 15(3): 205-214. https://dorl.net/dor/ 20.1001.1.17358779.1400.15.3.5.4  [In Persian]. 
  10. Rai HS, Singh S, Cheema PPS, Bansal TK, Banerjee UC. Decolorization of triphenylmethane dye-bath effluent in an integrated two-stage anaerobic reactor. J Environ Manag. 2007;83(3):290–297. https://doi.org/ 10.1016/ j.jenvman.2006.03.003
  11. Verma P, Baldrian P, Nerud F. Decolorization of structurally different synthetic dyes using cobalt(II)/ascorbic acid/hydrogen peroxide system. Chemosphere. 2003;50(8): 975–579. https://doi.org/10. 1016/s00456535(02)00705-1
  12. Ahmady-Asbchin S, Moradi H, Tabaraki R. Study of Microbial Decolorization of Indigo Carmine Dye by Acinetobacter Lwoffii. J Color Sci Tech, 2016; 10(1): 65-70. https://dorl.net/dor/20.1001.1.17358779.1395. 10.1.7.7 [In Persian]. 
  13. Abu Talha M, Goswami M, Giri BS, Sharma A, Rai BN, Singh RS. Bioremediation of Congo red dye in immobilized batch and continuous packed bed bioreactor by Brevibacillus parabrevis using coconut shell bio-char. Bioresource Technol. 2018;252:37–43. https://doi.org/10.1016/j.biortech.2017.12.081.
  14. Vikrant K, Giri BS, Raza N, Roy K, Kim KH, Rai BN, et al. Recent advancements in bioremediation of dye: Current status and challenges. Bioresource Technol. 2018;253:355–367. https://doi.org/10.1016/j. biortech. 2018.01.029.
  15. Du LN, Li G, Zhao YH, Xu HK, Wang Y, Zhou Y, et al. Efficient metabolism of the azo dye methyl orange by Aeromonas sp. strain DH-6: Characteristics and partial mechanism. Int Biodeterior Biodegrad. 2015;105:66–72. https://doi.org/10.1016/j. ibiod. 2015. 08.019.
  16. Mathivanan MVP, Chinnaiah SS, Sundaram Rs S. Dye Degradation using Saccharomyces Cerevisiae. IJET. 2018; 20;7(3.12):180. https://doi.org/10.14419/ijet.v7i3. 12. 15915.
  17. Thangaraj S, Bankole PO, Sadasivam SK. Microbial degradation of azo dyes by textile effluent adapted, Enterobacter hormaechei under microaerophilic condition. Microbiol Res. 2021;250:126805. https://doi. org/ 10.1016/j.micres.2021.126805.
  18. Mustafa G, Tariq Zahid M, Ali S, Zaghum Abbas S, Rafatullah M. Biodegradation and discoloration of disperse blue-284 textile dye by Klebsiella pneumoniae GM-04 bacterial isolate. J King Saud University Sci. 2021;33(4):101442.https://doi.org/10.1016/j.jksus.2021. 101442.
  19. Srivastava A, Dangi LK, Kumar S, Rani R. Microbial decolorization of Reactive Black 5 dye by Bacillus albus DD1 isolated from textile water effluent: kinetic, thermodynamics & decolorization mechanism. Heliyon. 2022;8(2):e08834. https://doi.org/10.1016/j. heliyon. 2022.e08834.
  20. Biju LM, Pooshana V, Kumar PS, Gayathri KV, Ansar S, Govindaraju S. Treatment of textile wastewater containing mixed toxic azo dye and chromium (VI) BY haloalkaliphilic bacterial consortium. Chemosphere. 2022;287:132280. https://doi.org/10.1016/j. chemosphere. 2021.132280
  21. Lin CY, Nguyen MLT, Lay CH. Starch-containing textile wastewater treatment for biogas and microalgae biomass production. J Cleaner Prod. 2017;168:331–337. https://doi.org/10.1016/j.jclepro.2017.09.036.
  22. Poorasadollah D, Bagheri Lotfabad T, Heydarinasab A, Yaghmaei S, Mohseni FA. Biological activated carbon process for biotransformation of azo dye Carmoisine by Klebsiella spp. Environ Technol. 2022;43(18):2713–2729. https://doi.org/10.1080/09593330.2021.1897167.
  23. Karimzadeh M, Bagherilotfabad T, Heidarinasab A, Yaghmaei S. Biodecolourization of Azo Dye under Extreme Environmental Conditions via Klebsiella Quasipneumoniae GT7: Mechanism and Efficiency. JEHSD. 2022; 7(2):1660-75. https://doi.org/ 10.18502/ jehsd.v7i2.9789.
  24. Willetts JRM, Ashbolt NJ, Moosbrugger RE, Aslam MR. The use of a thermophilic anaerobic system for pretreatment of textile dye wastewater. Water Sci Technol. 20001;42(5–6):309–316. https://doi.org/10. 2166/wst.2000.0529.
  25. Plummer DT. An introduction to practical biochemistry. 3rd ed. London ; New York: McGraw-Hill; 1987. 332 p. 
  26. Viles FJ, Silverman L. Determination of Starch and Cellulose with Anthrone. Anal Chem. 1949 Aug 13;21(8):950–953.https://doi.org/10.1021/ac60032a019.
  27. Kiayi Z, Lotfabad TB, Heidarinasab A, Shahcheraghi F. Microbial degradation of azo dye carmoisine in aqueous medium using Saccharomyces cerevisiae ATCC 9763. J Hazard Mater. 2019;373:608–619. https://doi.org/10.1016/j.jhazmat.2019.03.111.
  28. Tchobanoglous G, Stensel HD, Tsuchihashi R, Burton FL, Abu-Orf M, Bowden G, et al., editors. Wastewater engineering: treatment and resource recovery. Fifth edition. New York, NY: McGraw-Hill Education; 2014. 1068–1070. 
  29. Mino T, Pedro DCS, Matsuo T. Estimation of the rate of slowly biodegradable COD (SBCOD) hydrolysis under anaerobic, anoxic and aerobic conditions by experiments using starch as model substrate. Water Sci Technol. 1995;31(2):95–103. https://doi.org/10.1016/ 0273-1223(95)00183-N.
  30. Kheyrandish M, Asadollahi MA, Jeihanipour A, Karimi K, Rismani-Yazdi H. The use of non- treated starch for butanol production by Clostridium acetobutylicum. Biological J Microorganism. 2015;4(14):1–8. https://sid.ir/paper/237357/fa [In Persian]
  31. Cui D, Li G, Zhao M, Han S. Decolourization of azo dyes by a newly isolated Klebsiella sp. strain Y3, and effects of various factors on biodegradation. Biotechnol Biotechnol Equipment. 2014 4;28(3):478–86. http://dx.doi.org/10.1080/13102818.2014.926053.
  32. Wong PK, Yuen PY. Decolorization and biodegradation of methyl red by Klebsiella pneumoniae RS-13. Water Res. 1996;30(7):1736–44. https://doi.org/ 10.1016/0043-1354(96)00067-X .
  33. Dixit S, Garg S. Biodegradation of Environmentally Hazardous Azo Dyes and Aromatic Amines Using Klebsiella pneumoniae. J Environ Eng. 2018;144(6): 04018035. https://doi.org/10.1061/(ASCE)EE.1943-7870.0001353.
  34. Dorlikar SR, Tumane PM, Wasnik DD, Kolte NA. Comparative study on biodegrdation of azo dyes by klebsiella pneumoniae isolated from environmental and clinical samples. 2018;10(07):71010–5. https://doi.org/ 10.24941/ijcr.31437.07.2018.
  35. Shabbir S, Faheem M, Ali N, Kerr PG, Wu Y. Evaluating role of immobilized periphyton in bioremediation of azo dye amaranth. Bioresour Technol. 2017;225:395–401. https://doi.org/10.1016/j. biortech.2016.11.115.
  36. Saratale RG, Saratale GD, Chang JS, Govindwar SP. Ecofriendly degradation of sulfonated diazo dye C.I. Reactive Green 19A using Micrococcus glutamicus NCIM-2168. Bioresour Technol. 2009;100(17):3897–3905. https://doi.org/10.1016/j.biortech.2009.03.051.