بررسی حذف هم‌زمان رنگزاهای متیلن آبی و بلور بنفش از محلول‌های آبی توسط جاذب مغناطیسی بر پایه کلینوپتیلولیت/آلژینات

نوع مقاله : مقاله پژوهشی

نویسندگان

دانشکده مهندسی شیمی و نفت، دانشگاه تبریز، تبریز، ایران، صندوق پستی: 16471-51666

چکیده

حذف هم‌زمان رنگزاهای متیلن آبی و بلور بنفش با استفاده از جاذب­های نانوکامپوزیت کلینوپتیلولیت/Fe3O4 (Clin/Fe3O) و نانوکامپوزیت دانه­ای آلژینات/کلینوپتیلولیت/Fe3O4 (Alg/Clin/Fe3O4) مورد بررسی قرار گرفت. تاثیر عوامل محیطی موثر در فرآیند جذب شامل pH، مقدار جاذب، دما، زمان تماس و غلظت رنگ بررسی شد. نتایج نشان داد که بیشترین میزان جذب رنگزاها با استفاده از هر دو جاذب در شرایط 8=pH، دوز جاذب g/l زمان تماس 60 دقیقه، دما 25 درجه سانتی‌گراد و غلظت رنگ ppm 10 به دست آمد. تحت شرایط بهینه، درصد جذب رنگزای متیلن آبی 80.36 و 74.51 درصد و درصد جذب رنگزای بلور بنفش 7.83 و 70.19 درصد به ترتیب با استفاده از جاذب­های Clin/Fe3O و Alg/Clin/Fe3O4  به دست آمد. بررسی مدل­های ایزوترم نشان داد که فرآیند جذب هر دو ماده رنگزا، عمدتا به صورت فیزیکی و مطلوب می­باشد. داده­های تجربی مربوط به جذب رنگزاها با استفاده از هر دو جاذب با مدل ایزوترم لانگمویر و مدل سینتیکی شبه درجه دوم بیشترین تطابق را داشت. بررسی ترمودینامیکی نشان داد که فرآیند جذب گرمازا و خود به خودی بوده است.

کلیدواژه‌ها


عنوان مقاله [English]

Simultaneous Removal of Methylene Blue and Crystal Violet Dyes from Aqueous Solutions Using Magnetic Granular Adsorbent Based on Clinoptilolite/Alginate

نویسندگان [English]

  • Maryam Noori
  • Maryam Tahmasebpoor
Faculty of Chemical and Petroleum Engineering, University of Tabriz, P.O. Box: 51666-16471, Tabriz, Iran
چکیده [English]

Simultaneous removal of methylene blue and crystal violet was investigated. Adsorbents made of clinoptilolite/Fe3O4 (Clin/Fe3O4) nanocomposites and alginate/clinoptilolite/Fe3O4 (Alg/Clin/Fe3O4) nanocomposite beads were used. The effects of effective environmental parameters such as pH, adsorbent amount, temperature, contact time, and dye concentration were examined in the adsorption process. The results showed that the highest amount of dye adsorption using both adsorbents was obtained under pH = 8, adsorbent dose of 2 g/l, contact time of 60 minutes, temperature of 25 ºC, and dye concentration of 10 ppm. Under optimal conditions, the adsorption percentage of methylene blue dye was obtained as 80.36 and 74.51 %, and the adsorption percentage of crystal violet dye was obtained as 75.83 and 70.19 %, using Clin/Fe3O4 and Alg/Clin/Fe3O4 adsorbents, respectively. Investigating isothermal models showed that both dyes' adsorption process was mainly physical and desirable. Experimental data on dye adsorption using both adsorbents was most consistent with the Langmuir isotherm and the pseudo-second-order kinetic models. The thermodynamic study showed that the adsorption process was exothermic and spontaneous.

کلیدواژه‌ها [English]

  • Simultaneous dyes removal
  • Crystal violet
  • Methylene blue
  • Clinoptilolite
  • Magnetic adsorbent
  1. K. T. Kubra, M. S. Salman, M. N. Hasan, Enhanced toxic dye removal from wastewater using biodegradable polymeric natural adsorbent. J. Mol. Liq. 328 (2021), 115468.
  2. M. Heydari, M. Gharagozlou, M. Ghahari, Synthesis application of nanocomposite containing metal-organic framework and magnetic nanoparticles in silica matrix for decolorization of methylene blue. J. Color Sci. Tech.  15(2021), 103-115. [In Persian]
  3. S. Dutta, B. Gupta, S. K. Srivastava, A. K. Gupta, Recent advances on the removal of dyes from wastewater using various adsorbents: A critical review. Mater. Adv. 2 (2021), 4497-4531.
  4. A. salah omer et al., Adsorption of crystal violet and methylene blue dyes using a cellulose-based adsorbent from sugercane bagasse: characterization, kinetic and isotherm studies. J. Mater. Res. Technol. 2022.
  5. M. J. Uddin, R. E. Ampiaw, W. Lee, Adsorptive removal of dyes from wastewater using a metal-organic framework: A review. Chemosphere. 284(2021), 131314.
  6. N. Yousefi Limaee, M. Ghahari, K. Seifpanahi-Shabani, A. Naeimi, S. Ghaedi, Evaluation of adsorptive efficiency of calcium oxide nanoparticles for the elimination of cationic dyes: combustion synthesis, adsorption study and numerical modeling. Prog. Color, Colorants Coat. 16(2023), 1-20.
  7. F. Piri, A. Mollahosseini, A. khadir, M. Milani Hosseini, Enhanced adsorption of dyes on microwave-assisted synthesized magnetic zeolite-hydroxyapatite nanocomposite. J. Environ. Chem. Eng. 7(2019), 103338.
  8. M. A. Farghali, M. M. Abo-Aly, T. A. Salaheldin, Modified mesoporous zeolite-A/reduced graphene oxide nanocomposite for dual removal of methylene blue and Pb2+ ions from wastewater. Inorg. Chem. Commun. 126(2021), 108487.
  9. A. Badeenezhad, A. Azhdarpoor, S. Bahrami, S. Yousefinejad, Removal of methylene blue dye from aqueous solutions by natural clinoptilolite and clinoptilolite modified by iron oxide nanoparticles. Mol. Simul. 45 (2019), 564-571.
  10. M. Noori, M. Tahmasebpoor, R. Foroutan, Enhanced adsorption capacity of low-cost magnetic clinoptilolite powders/beads for the effective removal of methylene blue: Adsorption and desorption studies. Mater. Chem. Phys. 278(2022), 125655.
  11. V. Rocher, A. Bee, J.-M. Siaugue, V. Cabuil, Dye removal from aqueous solution by magnetic alginate beads crosslinked with epichlorohydrin. J. Hazardous Mater. 178(2010), 434-439.
  12. R. Aravindhan, N. N. Fathima, J. R. Rao, B. U. Nair, Equilibrium and thermodynamic studies on the removal of basic black dye using calcium alginate beads. Colloids Surf. A. 299(2007), 232-238.
  13. M. Noori, M. Tahmasebpoor, L. Khazini, Effective Parameters on the formation of natural zeolite-based granules to remove cationic dyes from contaminated water. Iranian J. Polymer Sci. Technol. 34(2021), 267-279.
  14. S. Sahu, S. Pahi, S. Tripathy, S. K. Singh, A. Behera, U. K. Sahu, R. K. Patel, Adsorption of methylene blue on chemically modified lychee seed biochar: Dynamic, equilibrium, and thermodynamic study. J. Mol. Liq. 315(2020), 113743.
  15. Y. Shen, P. Zhou, S. Zhao, A. Li, Y. Chen, J. Bai, Y. Ao, Synthesis of high-efficient TiO2/clinoptilolite photocatalyst for complete degradation of xanthate. Miner. Eng. 159 (2020), 106640.
  16. M. Bordbar, Z. Sharifi-Zarchi, B. Khodadadi, Green synthesis of copper oxide nanoparticles/clinoptilolite using Rheum palmatum L. root extract: high catalytic activity for reduction of 4-nitro phenol, rhodamine B, and methylene blue. J. Sol-Gel Sci. Technol. 81(2017), 724-733.
  17. M. Bayat, V. Javanbakht, J. Esmaili, Synthesis of zeolite/nickel ferrite/sodium alginate bionanocomposite via a co-precipitation technique for efficient removal of water-soluble methylene blue dye. Int. J. Biol. Macromol. 116(2018), 607-661.
  18. J. Kazemi, V. Javanbakht, Alginate beads impregnated with magnetic Chitosan@ Zeolite nanocomposite for cationic methylene blue dye removal from aqueous solution. Int. J. Biol. Macromol. 154(2020), 1426-1437.
  19. M. Sarabadan, H. Bashiri, S. M. Mousavi, Adsorption of crystal violet dye by a zeolite-montmorillonite nano-adsorbent: modelling, kinetic and equilibrium studies, Clay Miner. 54, (2019), 357-368.
  20. S. Periyasamy, N. Viswanathan, Hydrothermal synthesis of melamine-functionalized covalent organic polymer-blended alginate beads for iron removal from water. J. Chem. Eng. Data. 64(2019), 2280-2291.
  21. A. Pawlak, M. Mucha, Thermogravimetric and FTIR studies of chitosan blends, Thermochim. Acta. 396(2003), 153-166.
  22. O. Sakin Omer, M. A. Hussein, B. H. M. Hussein, A. Mgaidi, Adsorption thermodynamics of cationic dyes (methylene blue and crystal violet) to a natural clay mineral from aqueous solution between 293.15 and 323.15 K. Arabian J. Chem. 11(2018), 615-623.
  23. M. J. Athari, M. Tahmasebpoor, Experimental study on the crystal violet dye removal from water using activated carbon prepared from oleaster seed and peel. J.Color Sci. Tech. 2022. [In Persian]
  24. R. Khalighi Sheshdeh, M. R. Khosravi Nikou, Kh. Badii, N. Yousefi Limaee, Adsorption of Acid Blue 92 dye on modified diatomite by nickel oxide nanoparticles in aqueous solutions. Prog. Color. Colorants Coat. 5(2012), 101-116.
  25. S. Bentahar, A. Dbik, M. El Khomri, N. El Messaoudi, A. Lacherai, Adsorption of methylene blue, crystal violet and congo red from binary and ternary systems with natural clay: Kinetic, isotherm, and thermodynamic. J. Environ. Chem. Eng. 5(2017), 5921-5932.
  26. M. Asif Tahir, H. N. Bhatti, M. Iqbal, Solar Red and Brittle Blue direct dyes adsorption onto Eucalyptus angophoroides bark: Equilibrium, kinetics and thermodynamic studies, J. Environ. Chem. Eng. 4(2016), 2431-2439.
  27. W.A. Khanday, M. Asif, B. H. Hameed, Cross-linked beads of activated oil palm ash zeolite/chitosan composite as a bio-adsorbent for the removal of methylene blue and acid blue 29 dyes. Int. J. Biol. Macromol. 95 (2017), 895-902.
  28. Z. Jiaqi, D. Yimin, L. Danyang, W. Shengyun, Z. Liling, Z. Yi, Synthesis of carboxyl-functionalized magnetic nanoparticle for the removal of methylene blue. Colloids Surf. A. 572(2019), 58-66.
  29.  T. H. Tran, A. H. Le, T. H. Pham, D. T.Nguyen, S. W. Chang, W. J. Chung, D. D. Nguyen, Adsorption isotherms and kinetic modeling of methylene blue dye onto a carbonaceous hydrochar adsorbent derived from coffee husk waste. Sci. Total Environ. 725(2020), 138325.
  30. N. A. Negm, M. G. Abd El Wahed, A. R. A. Hassan, M. T. H. Abou Kana, Feasibility of metal adsorption using brown algae and fungi: Effect of biosorbents structure on adsorption isotherm and kinetics. J. Mol. Liq. 264(2018), 292-305.
  31. R. A. Raj, V. Manimozhi, and R. Saravanathamizhan, Adsorption studies on removal of Congo red dye from aqueous solution using petroleum coke. Pet. Sci. Technol. 37(2019), 913-924.
  32. R. Sabarish, G. Unnikrishnan, Polyvinyl alcohol/ carboxymethyl cellulose/ZSM-5 zeolite biocomposite membranes for dye adsorption applications. Carbohydr. Polym. 199(2018), 129-140.
  33. H. Eyni, H. Tahermansouri, F. Kiani, M. Jahangiri, Kinetics, equilibrium and isotherms of Pb2+ adsorption from aqueous solutions on carbon nanotubes functionalized with 3-amino-5a, 10a-dihydroxybenzo [b] indeno [2, ld] furan-10-one. New Carbon Mater. 34(2019), 512-523, 2019.
  34. Q. Hu, Z. Zhang, Application of Dubinin–Radushkevich isotherm model at the solid/solution interface: A theoretical analysis. J. Mol. Liq. 277(2019), 646-648.
  35. N. Bordoloi, R. Goswami, M. Kumar, R. Kataki, Biosorption of Co (II) from aqueous solution using algal biochar: Kinetics and isotherm studies. Bioresour. Technol. 244(2017), 1465-1469.
  36. Y. Zhan, X. Guan, E. Ren, S. Lin, J. Lan, Fabrication of zeolitic imidazolate framework-8 functional polyacrylonitrile nanofibrous mats for dye removal. J. Polym. Res. 26 (2019), 145.
  37. S. Radoor, J. Karayil, J. Parameswaranpillai, S. Siengchin, Adsorption study of anionic dye, Eriochrome black T from aqueous medium using polyvinyl alcohol/starch/ZSM-5 zeolite membrane. J. Polym. Environ. 28(2020), 2631-264.
  38. N. A. Negm, M. G. Abd El Wahed, A. R. A. Hassan, M. T. Abou Kana, Feasibility of metal adsorption using brown algae and fungi: effect of biosorbents structure on adsorption isotherm and kinetics. J. Mol. Liq. 264(2018), 292-305.
  39. X. Wang, C. Jiang, B. Hou, Y. Wang, C. Hao, J. Wu, Carbon composite lignin-based adsorbents for the adsorption of dyes. Chemosphere, 206(2018), 587-596.
  40. N. C. Joshi, V. K. Chhibber, A kinetic and thermodynamic study of copper removal using Deodar (Cedrus deodara) leaves, ed: EJPMR, 2017.
  41. L. Cheng, L. Sun, W. Xue, Z. Zeng, S. Li, Adsorption equilibrium and kinetics of Pb (II) from aqueous solution by modified walnut shell. Environ. Prog. Sustain Energy. 35(2016), 1724-1731.
  42. Y. Wang, Y. Zhang, S. Li, W. Zhong, W. Wei, Enhanced methylene blue adsorption onto activated reed-derived biochar by tannic acid. J. Mol. Liq. 268(2018), 658-666.
  43. A. Oussalah, A. Boukerroui, A. Aichour, B. Djellouli, Cationic and anionic dyes removal by low-cost hybrid alginate/natural bentonite composite beads: adsorption and reusability studies. Int. J. Biol. Macromol. 124(2019), 854-862.
  44. Y. H. Fan, S. W. Zhang, S. B. Qin, X. S. Li, S. H. Qi, An enhanced adsorption of organic dyes onto NH2 functionalization titanium-based metal-organic frameworks and the mechanism investigation. Microporous Mesoporous Mater. 263(2018), 120-127.
  45. N. N. Nassar, Rapid removal and recovery of Pb (II) from wastewater by magnetic nanoadsorbents. J. Hazard. Mater. 184(2010), 538-546.
  46. H. J. Kumari, P. Krishnamoorthy, T. Arumugam, S. Radhakrishnan, D. Vasudevan, An efficient removal of crystal violet dye from waste water by adsorption onto TLAC/Chitosan composite: a novel low cost adsorbent. Int. J. Biol. Macromol. 96(2017), 324-333.
  47. J. Duraipandian, T. Rengasamy, S. Vadivelu, Experimental and modeling studies for the removal of crystal violet dye from aqueous solutions using eco-friendly Gracilaria corticata seaweed activated carbon/Zn/Alginate Polymeric composite beads. J. Polym. Environ. 25(2017), 1062-1071.
  48. H. Jayasantha Kumari, P. Krishnamoorthy, T. K. Arumugam, S. Radhakrishnan, D. Vasudevan, An efficient removal of crystal violet dye from waste water by adsorption onto TLAC/Chitosan composite: A novel low cost adsorbent. Int. J. Biol. Macromol. 96(2017), 324-333.
  49. M. Shirani, A. Semnani, H. Haddadi, S. Habibollahi, Optimization of simultaneous removal of methylene blue, crystal violet, and fuchsine from aqueous solutions by magnetic NaY zeolite composite. Water Air Soil Pollut. 225(2014), 1-15.
  50. O. S. Amodu, T. V. Ojumu, S. K. Ntwampe, O. S. Ayanda, Rapid adsorption of crystal violet onto magnetic zeolite synthesized from fly ash and magnetite nanoparticles. J. Encapsulation Adsorpt. Sci. 4(2015), 191.
  51. A. Gürses, S. Karaca, Ç. Doğar, R. Bayrak, M. Açıkyıldız, M. Yalçın, Determination of adsorptive properties of clay/water system: methylene blue sorption. J. Colloid Interface Sci. 269(2004), 310-314.
  52. S. Fan, J. Tang, Y. Wang, H. Li, H. Zhang, J. Tang, X. Li, , Biochar prepared from co-pyrolysis of municipal sewage sludge and tea waste for the adsorption of methylene blue from aqueous solutions: Kinetics, isotherm, thermodynamic and mechanism. J. Mol. Liq. 220(2016), 432-441.
  53. R. Davarnejad, S. Afshar, P. Etehadfar, Activated carbon blended with grape stalks powder: properties modification and its application in a dye adsorption. Arabian J. Chem. 13 (2020), 5463-5473.
  54. Y. Yao, B. Gao, J. Fang, M. Zhang, H. Chen, Y. Zhou, L. Yang, Characterization and environmental applications of clay–biochar composites. Chem. Eng. J. 242(2014), 136-143.
  55. C. Liu, A. Omer, X. k. Ouyang, Adsorptive removal of cationic methylene blue dye using carboxymethyl cellulose/k-carrageenan/activated montmorillonite composite beads Isotherm and kinetic studies. Int. J. Biological Macromol. 106(2018), 823-833.