بررسی توانایی هیدروکسید دوگانه لایه‌ای Ni/Al سنتزشده در حذف رنگ تارترازین

نوع مقاله : مقاله پژوهشی

نویسندگان

گروه شیمی، دانشکده علوم پایه، دانشگاه آزاد اسلامی واحد خرم‌آباد، خرم‌آباد، ایران، صندوق پستی: 68135/536

چکیده

در این پژوهش نخست هیدروکسید دوگانه لایه­ای Ni/Al به روش هم­رسوبی سنتز شده و سپس به عنوان جاذب برای حذف رنگ تارترازین از محلول آبی استفاده شده است. مشخصه­یابی جاذب سنتزی توسط پراش پرتو ایکس و میکروسکوپ الکترونی روبشی انجام شد. در مطالعه فرآیند جذب سطحی بهینه­سازی غلظت اولیه رنگ، زمان تماس، pH، مقدار جاذب و دما انجام گرفت. مقدار درصد حذف رنگ در شرایط بهینه 98 درصد و بیشینه ظرفیت جذب برابر mg.g-1 3333.33 بود. بررسی­های سینتیکی جذب سطحی بیانگر همخوانی این فرآیند از سینتیک شبه مرتبه اول می­باشد. مطالعات ترمودینامیکی این پژوهش نشان داد فرآیند حذف رنگ توسط جاذب سنتزی، گرماده و خودبه­خودی بوده که همراه با کاهش بی­نظمی است. داده­های به­دست آمده گویای این است که هیدروکسید دوگانه لایه­ای Ni/Al می­تواند جاذب کارآمدی برای حذف تارترازین از محلول آبی باشد.

کلیدواژه‌ها


عنوان مقاله [English]

Investigation of the Ability of Synthesized Layered Double Hydroxide Ni/Al to Remove Tartrazine Dye

نویسندگان [English]

  • A. Ahmadi Iranshahi
  • Ghazaleh Kouchakzadeh
Department of Chemistry, Islamic Azad University, Khorramabad branch, P.O.Box: 536/68135, Khorramabad, Iran
چکیده [English]

In this research, the first layered double hydroxide Ni­/Al was synthesized by co­-precipitation method, and then it was used to remove tartrazine dye from an aqueous solution. The synthesized adsorbent was characterized by X-ray diffraction and a scanning electron microscope. Initial concentration, contact time, pH, the dose of adsorbent and temperature were optimized in this adsorption process. The dye removal percentage and maximum adsorption capacity were 98 % and 3333.33 mg.g-1, respectively. The results showed that the adsorption kinetics follow pseudo­-­first­-­order model. According to thermodynamic results, the process of dye removal by synthesized adsorbent is exothermic, spontaneous, and accompanied by decreasing irregularity. This research showed that layered double hydroxide Ni­-­Al could be an efficient adsorbent for tartrazine removal from an aqueous solution.

کلیدواژه‌ها [English]

  • Dye removal Layered double hydroxide Ni‌/Al Tartrazine dye Pseudo
  • first
  • order kinetics
  1. M. A. I. Salem, M. I. Marzouk, H. M. Mashaly, Synthesis of pharmacological dyes and their application on synthetic fabrics. Color. Technol. 131(2015), 288-297.
  2. S. Kobylewski, M. F. Jacobson, Toxicology of food dyes. Int. J. Occup. Environ. Health. 18(2012), 220–246.
  3. Food Ingredients & Colors, International Food Information Council, June 29, 2010, Retrieved Feb 15 2012 (2010).
  4. T. Zou, P. He, A. Yasen, Zh. Li, Determination of seven synthetic dyes in animal feeds and meat by high performance liquid chromatography with diode array and tandem mass detectors. Food Chem. 138(2013), 1742–1748.
  5. M. Avazpour, F. Seifipour, J. Abdi, T. Nabavi, M. Zamanian-Azodi, Detection of dyes in confectionery products using thin-layer chromatography. Iranian J Nutr Sci Food Technol. 8(2013), 73-78.
  6. H. I. Albroomi, M. A. Elsayed, A. Baraka, M. A. Abdelmaged, Batch and fixed-bed adsorption of tartrazine azo-dye onto activated carbon prepared from apricot stones, Appl. Water Sci. 7(2017), 2063–2074. 
  7. F. A. Dawodu, K. G. Akpomie, Evaluating the potential of a Nigerian soil as an adsorbent for tartrazine dye: Isotherm, kinetic and thermodynamic studies, Alex. Eng. J. 55(2016), 3211–3218.
  8. H. Ouassif, E. M. Moujahid, R. Lahkale, R. Sadik, F. Z. Bouragba, E. mouloudi Sabbar, M. Diouri, Zinc-Aluminum layered double hydroxide: High efficient removal by adsorption of tartrazine dye from aqueous solution. Surf. Interfaces. 18(2020), 100401. 
  9. C. Gallen, J. Pla, Allergie et intolérance aux additifs alimentaires. Rev. Fr. Allergol. 53(2013), 9–18.
  10. S. Sahnoun, M. Boutahala, C. Tiar, A. Kahoul, Adsorption of tartrazine from an aqueous solution by octadecyl trimethyl ammonium bromide-modified bentonite: Kinetics and isotherm modeling. C. R. Chim. 21(2018), 391–398.
  11. J. Zhang, P. Zhang, S. Zhang, Q. Zhou, Comparative study on the adsorption of tartrazine and indigo carmine onto maize cob carbon. Sep. Sci. Technol. 49(2014), 877–886. 
  12. A. Parchebaf Jadid, S. Sadeghi, The removal of Tartrazine dye by modified alumina with sodium dodecyl sulfate from aqueous solutions: equilibrium and thermodynamic studies. Food Hygiene. 7(2017), 25-35.
  13. A. B. Albadarin, M. Charara, B. J. Abu Tarboush, M. N. M. Ahmad, T. A. Kurniawan, M. Naushad, G. M. Walker, C. Mangwandi, Mechanism analysis of tartrazine biosorption onto masau stones; a low cost by-product from semi-arid regions. J. Mol. Liq. 242(2017), 478–483.
  14. M. A. Ali, M. F. Mubarak, M. Keshawy, M. A. Zayed, M. Ataalla, Adsorption of Tartrazine anionic dye by novel fixed bed Core-Shell- polystyrene Divinylbenzene/Magnetite nanocomposite. Alex. Eng. J. 61(2022), 1335–1352.
  15. C. Aydiner, Y. Kaya, Z. Beril Gönder, I. Vergili, Evaluation of membrane fouling and flux decline related with mass transport in nanofiltration of tartrazine solution. J. Chem. Technol. Biotechnol. 85(2010), 1229–1240. 
  16. J. Y. Gan, W. C. Chong, L. C. Sim, C. H. Koo, Y. L. Pang, E. Mahmoudi, A. W. Mohammad, Novel carbon quantum dots/silver blended polysulfone membrane with improved properties and enhanced performance in tartrazine dye removal. Membranes. 10(2020), 175. 
  17. M. Darwish, A. Mohammadi, N. Assi, Microwave-assisted polyol synthesis and characterization of pvp-capped cds nanoparticles for the photocatalytic degradation of tartrazine. Mater. Res. Bull. 74(2016), 387–396. 
  18. P. Oancea, V. Meltzer, Kinetics of tartrazine photodegradation by UV/H2O2 in aqueous solution. Chem. Pap. 68(2014), 105–111. 
  19. T. S. Jamil, S. E. A. Sharaf El-Deen, Removal of persistent tartrazine dye by photodegradation on TiO2 nanoparticles enhanced by immobilized calcinated sewage sludge under visible light. Sep. Sci. Technol. 51(2016), 1744–1756. 
  20. V. K. Gupta, R. Jain, A. Nayak, S. Agarwal, M. Shrivastava, Removal of the hazardous dye-Tartrazine by photo-degradation on titanium dioxide surface. Mater. Sci. Eng. C. 31(2011), 1062–1067.  
  21. N. Modirshahla, M. A. Behnajady, S. Kooshaiian, Investigation of the effect of different electrode connections on the removal efficiency of Tartrazine from aqueous solutions by electrocoagulation. Dyes Pigm. 74(2007), 249.
  22. T. S. Anantha Singh, S. T. Ramesh, New trends in electrocoagulation for the removal of dyes from wastewater: A review. Environ. Eng. Sci. 30(2013), 333–349. 
  23. A. Thiam, M. Zhou, E. Brillas, I. Sirés, Two-step mineralization of Tartrazine solutions: Study of parameters and by-products during the coupling of electrocoagulation with electrochemical advanced oxidation processes. Appl. Catal. B. 150–151(2014), 116–125. 
  24. A. Thiam, M. Zhou, E. Brillas, I. Sirés, A first pre-pilot system for the combined treatment of dye pollutants by electrocoagulation/EAOPs. J. Chem. Technol. Biotechnol. 89(2014), 1136–1144. 
  25. N. Liu, Y. Wu, Removal of methylene blue by electrocoagulation: a study of the effect of operational parameters and mechanism. Ionics. 25(2019), 3953–3960. 
  26. H. Zhian, N.  Noroozi Pesyan, Investigating changes in the physical and chemical effects of tartarazine dye remove on industrial wastewater by electrocoagulation method. Iran. J. Chem. Chem. Eng. 40(2021), 123–132. 
  27. A. Mittal, J. Mittal, L. Kurup, Adsorption isotherms, kinetics and column operations for the removal of hazardous dye, Tartrazine from aqueous solutions using waste materials—Bottom Ash and De-Oiled Soya, as adsorbents. J. Hazard. Mate. 136(2006), 567–578. 
  28. W. S. Wan Ngah, N. F. M. Ariff, M. A. K. M. Hanafiah Preparation, Characterization, and environmental application of crosslinked chitosan-coated bentonite for tartrazine adsorption from aqueous solutions, Wat. Air Soil Poll. 206(2010), 225–236. 
  29. R. K. Gautam, P. K. Gautam, S. Banerjee, V. Rawat, S. Soni, S. K. Sharma, M. C. Chattopadhyaya, Removal of tartrazine by activated carbon biosorbents of Lantana camara: Kinetics, equilibrium modeling and spectroscopic analysis. J. Environ. Chem. Eng. 3(2015), 79–88.
  30. S. Banerjee, M. C. Chattopadhyaya, Adsorption characteristics for the removal of a toxic dye, tartrazine from aqueous solutions by a low cost agricultural by-product. Arab. J. Chem. 10(2017), S1629–S1638. 
  31. I. M. Reck, R. M. Paixão, R. Bergamasco, M. F. Vieira, A. M. S. Vieira, Removal of tartrazine from aqueous solutions using adsorbents based on activated carbon and Moringa oleifera seeds. J. Clean. Prod. 171(2018), 85–97. 
  32. M. E. Mahmoud, A. M. Abdelfattah, R. M. Tharwat, G. M. Nabil, Adsorption of negatively charged food tartrazine and sunset yellow dyes onto positively charged triethylenetetramine biochar: Optimization, kinetics and thermodynamic study. J. Mol. Liq. 318(2020), 114297. 
  33. B. Ali, B. Naceur, E. Abdelkader, E. Karima, Competitive adsorption of binary dye from aqueous solutions using calcined layered double hydroxides. Int. J. Environ. Anal. Chem. 100(2020), 1–20.  
  34. S. Mandal, S. Mayadevi, Adsorption of fluoride ions by Zn–Al layered double hydroxides. Appl. Clay Sci. 40(2008), 54–62. 
  35. M. Shamsayei, Y. Yamini, H. Asiabi, A novel diatomite supported layered double hydroxide as reusable adsorbent for efficient removal of acidic dyes, Int. J. Environ. Anal. Chem. 100(2020), 1–17. 
  36. Y. Zhu, R. Zhu, Q. Chen, M. Laipan, J. Zhu, Y. Xi, H.He, Calcined Mg/Al layered double hydroxides as efficient adsorbents for polyhydroxy fullerenes. Appl. Clay Sci. 151(2018), 66–72.
  37. A. Matei, R. Birjega, A. A. Vlad, B. Mitu, D. D. Baciu, M. Dinescu, R. Zavoianu, Chapter 10 - LDH-interlayered nanostructures for biomedical and environmental applications, In V. Dinca & M. P. B. T.-F. N. I. for E. and B. A. Suchea (Eds.). Micro and Nano Technologies. (2019), 259–28. 
  38. O. O. Balayeva, A. A. Azizov, M. B. Muradov, R. M. Alosmanov, Removal of tartrazine, ponceau 4R and patent blue V hazardous food dyes from aqueous solutions with ZnAl-LDH/PVA nanocomposite. J. Dispers. Sci. Technol. 42(2021), 1–14. 
  39. J. Das, B. S. Patra, N. Baliarsingh, K. M. Parida, Adsorption of phosphate by layered double hydroxides in aqueous solutions. Appl. Clay Sci. 32(2006), 252–260. 
  40. H. R. Pouretedal, N. Sadegh, Effective removal of Amoxicillin, Cephalexin, Tetracycline and Penicillin G from aqueous solutions using activated carbon nanoparticles prepared from vine wood. J. Water Process. Eng. 1(2014), 64–73.
  41. S. Mondal, K. Aikat, G. Halder, Biosorptive uptake of ibuprofen by chemically modified Parthenium hysterophorus derived biochar: Equilibrium, kinetics, thermodynamics and modeling. Ecol. Eng. 92(2016), 158–172. 
  42. A. Dehno Khalaji, Removal of methyl green dye using nickel oxide nanoparticles. J. Color Sci. Tech. 15(2021), 71-77. [In Persian]
  43. H. T. S. Britton, R .A. Robinson, CXCVIII.—Universal buffer solutions and the dissociation constant of veronal. J. Chem. Soc. (Resumed). 0: 1456-1462, 1931.
  44. I. Langmuir, The adsorption of gases on plane surfaces of glass, mica and platinum. J. Am. Chem. Soc. 40(1918), 1361–1403.
  45. K. Walsh, S. Mayer, D. Rehmann, T. Hofmann, K. Glas, Equilibrium data and its analysis with the Freundlich model in the adsorption of arsenic (V) on granular ferric hydroxide. Sep. Purif. Technol. 243(2020), 116704. 
  46. A. O. Dada, Langmuir, Freundlich, Temkin and Dubini­-­Radushkevich Isotherms Studies of equilibrium sorption of zn2+ unto phosphoric acid modified rice husk. IOSR J. Appl. Chem. 3(2012), 38–45.
  47. M. Manjuladevi, R. Anitha, S. Manonmani, Kinetic study on adsorption of Cr(VI), Ni(II), Cd(II) and Pb(II) ions from aqueous solutions using activated carbon prepared from Cucumis melo peel. Appl. Water Sci. 8(2018), 36. 
  48. L. Largitte, R. Pasquier, A review of the kinetics adsorption models and their application to the adsorption of lead by an activated carbon. Chem. Eng. Res. Des. 109(2016), 495–504. 
  49. Z. karimi, A. Allahverdi, F. Oshani, Investigation on the removal of dyes from wastewater using alumina composite nano adsorbent. J. Stud. Color Worl. 10(2020), 41-59. [In Persian]
  50. W. Yang, Z. Gao, J. Wang, J. Ma, M. Zhang, L. Liu, Solvothermal one-step synthesis of Ni–Al layered double hydroxide/carbon nanotube/reduced graphene oxide sheet ternary nanocomposite with ultrahigh capacitance for supercapacitors. ACS Appl. Mater. Interfaces. 5(2013), 5443–5454. 
  51. H. Abdolmohammad-Zadeh, Z. Rezvani, G. H. Sadeghi, E. Zorufi, Layered double hydroxides: a novel nano-sorbent for solid-phase extraction. Anal. Chim. Acta. 685(2011), 212–219.
  52. O. M. Ezekoye, K. G. Akpomie, S. I. Eze, C. N. Chukwujindu, J. U. Ani, O. T. Ujam, Biosorptive interaction of alkaline modified Dialium guineense seed powders with ciprofloxacin in contaminated solution: central composite, kinetics, isotherm, thermodynamics, and desorption. Int. J. phytoremediation. 22(2020), 1028–1037. 
  53. E. Cheikh S'Id, A. Kheribech, M. Degu, Z. Hatim, R. Chourak, C. M'Bareck, Removal of methylene blue from water by polyacrylonitrile co sodium methallylsulfonate copolymer (AN69) and polysulfone (PSf) synthetic membranes. Prog. Color Colorants Coat. 14(2021),89-100.