بررسی آزمایشگاهی حذف ماده رنگزای کاتیونی بلور بنفش از آب با استفاده از کربن فعال تهیه شده از هسته و پوسته سنجد

نوع مقاله : مقاله پژوهشی

نویسندگان

گروه مهندسی شیمی، دانشکده مهندسی شیمی و نفت، دانشگاه تبریز، تبریز، ایران، صندوق پستی: 16471-51666

چکیده

حذف رنگزای بلور بنفش به کمک جاذب کربن فعال تهیه شده از هسته و پوسته سنجد مورد بررسی قرار گرفت. تأثیر پارامترهایی از قبیل دوز جاذب، زمان تماس، غلظت اولیه­ رنگزا، pH محلول و دما بررسی شد. نتایج نشان داد که بیش‌ترین مقدار حذف ماده رنگزا در 8=pH، دمای محیط، زمان تماس 45 دقیقه و دوز  g/l1 کربن فعال تهیه شده از هسته سنجد در محلول با غلظت اولیه رنگزا برابر با ppm 50 و دوز g/l 1.5 کربن فعال تهیه شده از پوسته سنجد در محلول با غلظت اولیه رنگزا برابر با ppm 30 اتفاق می­افتد. تحت شرایط بهینه، بازدهی حذف بلور­ بنفش توسط جاذب­های تهیه شده از هسته و پوسته سنجد، به ترتیب 98.67 و 96.22 درصد به دست آمد. حداکثر ظرفیت جذب برای جاذب­های تهیه شده از هسته و پوسته سنجد نیز به ترتیب 89.2 وmg/g  44.8 به دست آمد. نتایج آزمایش­ها به خوبی با مدل لانگمویر مطابقت داشت. همچنین مشخص گردید که فرآیند حذف رنگزای بلور بنفش از مدل سینتیکی شبه­مرتبه دوم پیروی کرده و فرآیند خودبخودی می­باشد.

کلیدواژه‌ها


عنوان مقاله [English]

Experimental Study on the Crystal Violet Dye Removal from Water Using Activated Carbon Prepared from Oleaster Seed and Peel

نویسندگان [English]

  • M.J. Athari
  • M. Tahmasebpoor
Faculty of Chemical and Petroleum Engineering, University of Tabriz, P.O. Box: 51666-16471, Tabriz, Iran
چکیده [English]

Crystal violet dye removal was investigated using activated carbon adsorbent prepared from oleaster peel and seed. The effects of the various parameters were examined, including the adsorbent dosage, the contact time, the initial dye concentration, pH, and temperature. The results showed that the maximum dye removal capacity occurred at a contact time of 45 minutes, pH=8, ambient temperature, the dose of 1 g/L, and initial dye concentration of 50 ppm for the adsorbent prepared from oleaster seed and the dose of 1.5 g/L and initial dye concentration of 30 ppm for the adsorbent prepared from oleaster peel. Under optimal conditions, the crystal violet dye removal efficiencies were obtained as
98.67 % and 96.22 % for adsorbents prepared from seed and peel, respectively. The maximum adsorption capacity for adsorbents prepared from oleaster seed and peel was 89.2 and 44.8 mg/g, respectively. The experimental results were in good agreement with the Langmuir isotherm. Moreover, it was found that the crystal violet dye removal followed the pseudo-second-order kinetic model as a spontaneous process.

کلیدواژه‌ها [English]

  • Crystal violet removal
  • Activated carbon
  • Adsorption
  • Oleaster seed
  • Oleaster peel
  1. O. J. Hao, H. Kim, P. C. Chiang, Decolorization of wastewater. Crit. Rev. Env. Sci. Technol. 30(2000), 449-505.
  2. K. Mohanty, J. T. Naidu, B. C. Meikap, M. N. Biswas, Removal of crystal violet from wastewater by activated carbons prepared from rice husk. Ind. Eng. Chem. Res. 45(2006), 5165-5171.
  3. T. Robinson, G. McMullan, R. Marchant, P. Nigam, Remediation of dyes in textile effluent: a critical review on current treatment technologies with a proposed alternative. Bioresour. Technol. 77(2001), 247-255.
  4. A.  N. Ejhieh, M. Khorsandi, Photodecolorization of Eriochrome Black T using NiS–P zeolite as a heterogeneous catalyst. J. Hazard. Mater. 176(2010), 629-637.
  5. O. Türgay, G. Ersöz, S. Atalay, J. Forss, U. Welander, The treatment of azo dyes found in textile industry wastewater by anaerobic biological method and chemical oxidation. Sep. Purif. Technol. 79(2011). 26-33.
  6. B. K. Nandi, A. Goswami, M. K. Purkait, Removal of cationic dyes from aqueous solutions by kaolin: kinetic and equilibrium studies. Appl.Clay Sci. 42(2009), 583-590.
  7. Z. Karimi, A. Allahverdi, F. Oshani, Investigation on the removal of dyes from wastewater using alumina composite nano adsorbent. J. Stud. Color world. 2(2020), 41-59. [In Persian]
  8. M. Abrari, A. Tahvili, K. Mahfoozi, B. Noroozi, Adsorption of Acid Red 18 using bentonite modified by a cationic surface active agent (Hyamine). J. Color Sci. Tech. 1(2020), 29-37. [In Persian]
  9. M. Dodangeh, K. Gharanjig, M. Arami, M. Mohammadian, Synthesis, infra-red study, and application of polyamidoamine dendrimer modified with 1,8-naphthalimide derivatives as novel fluorescent disperse dye. Prog. Color, Colorants Coat. 15(2022), 203-211. ‏
  10. V. K. Gupta, A. Mittal, R. Jain, M. Mathur, S. Sikarwar, Adsorption of Safranin-T from wastewater using waste materials—activated carbon and activated rice husks. J. Colloid Interface Sci. 303(2006), 80-86.
  11. M. Ş. Tanyildizi, Modeling of adsorption isotherms and kinetics of reactive dye from aqueous solution by peanut hull. Chem. Eng. J. 168(2011), 1234-1240. ‏
  12. A. Mittal, D. Jhare, J. Mittal, Adsorption of hazardous dye Eosin Yellow from aqueous solution onto waste material De-Oiled Soya: Isotherm, kinetics and bulk removal. J. Molecular Liquids. 179(2013), 133-140.
  13. H. Daraei, A. Mittal, M. Noorisepehr, F. Daraei, Kinetic and equilibrium studies of adsorptive removal of phenol onto eggshell waste. Environ. Sci. Pollut. Res. 20(2013), 4603-4611.
  14. A. M. Aljeboree, A. F. Alkaim, A. H. Al-Dujaili, Adsorption isotherm, kinetic modeling and thermodynamics of crystal violet dye on coconut husk-based activated carbon. Desalin. Water Treat. 53(2015), 3656-3667.
  15. S. Senthilkumaar, P. Kalaamani, C. V. Subburaam, Liquid phase adsorption of crystal violet onto activated carbons derived from male flowers of coconut tree. J. hazard. mater. 136(2006), 800-808.
  16. H. Yang, R. Yan, H. Chen, D. H. Lee, C. Zheng, Characteristics of hemicellulose, cellulose and lignin pyrolysis. Fuel. 86(2007), 1781-1788. 
  17. A. E. Ogungbenro, D. V. Quang, K. Al-Ali, M. R. Abu-Zahra, Activated carbon from date seeds for CO2 capture applications. Energy Procedia. 114(2017), 2313-2321. ‏
  18. H. Demiral, İ. Demiral, Surface properties of activated carbon prepared from wastes. Surface and Interface Analysis. 40(2008), 612-615. ‏
  19. Ö. Şahin, C. Saka, A. A. Ceyhan, O.  Baytar, Preparation of high surface area activated carbon from Elaeagnus angustifolia seeds by chemical activation with ZnCl2 in one-step treatment and its iodine adsorption. Sep. Sci. Technol. 50(2015), 886-891. ‏
  20. D. Das, B. C. Meikap, Optimization of process condition for the preparation of amine-impregnated activated carbon developed for CO2 capture and applied to methylene blue adsorption by response surface methodology.  J. Environ. Sci. Health, Part A. 52(2017), 1164-1172. ‏
  21. S. Rattanaphan, T. Rungrotmongkol, P. Kongsune, Biogas improving by adsorption of CO2 on modified waste tea activated carbon. Renewable Energy. 145(2020), 622-631.‏
  22. L. Mouni, L. Belkhiri, J. C. Bollinger, A. Bouzaza, A. Assadi, A. Tirri, H. Remini, Removal of Methylene Blue from aqueous solutions by adsorption on Kaolin: Kinetic and equilibrium studies. Appl. Clay Sci. 153(2018), 38-45.‏
  23. Y. Zhu, B. Yi, Q. Yuan, Y. Wu, M. Wang, S. Yan, Removal of methylene blue from aqueous solution by cattle manure-derived low temperature biochar. RSC adv. 8(2018), 19917-19929.
  24. G. K. Cheruiyot, W. C. Wanyonyi, J. J. Kiplimo, E. N. Maina, Adsorption of toxic crystal violet dye using coffee husks: equilibrium, kinetics and thermodynamics study. Sci. Afr. 5(2019), 116-119.‏
  25. S. Shoukat, H. N. Bhatti, M. Iqbal, S. Noreen, Mango stone biocomposite preparation and application for crystal violet adsorption: a mechanistic study. Microporous Mesoporous Mater. 239(2017), 180-189.‏
  26. S. Senthilkumaar, P. Kalaamani, C. V. Subburaam, Liquid phase adsorption of crystal violet onto activated carbons derived from male flowers of coconut tree. J. Hazard. Mater. 136(2006), 800-808.
  27. N. Tahir, H. N. Bhatti, M. Iqbal, S. Noreen, Biopolymers composites with peanut hull waste biomass and application for Crystal Violet adsorption. Int. J. Biol. Macromol. 94(2017), 210-220.
  28. C. Muthukumaran, V. M. Sivakumar, M. Thirumarimurugan, Adsorption isotherms and kinetic studies of crystal violet dye removal from aqueous solution using surfactant modified magnetic nanoadsorbent. J. Taiwan Inst. Chem. Eng. 63(2016), 354-362.
  29.  ‏Z. Jiaqi, D. Yimin, L. Danyang, W. Shengyun, Z. Liling, Z. Yi, Synthesis of carboxyl-functionalized magnetic nanoparticle for the removal of methylene blue. Colloids Surf. A. 572(2019), 58-66.
  30. Q. Hu, Z. Zhang, Application of Dubinin–Radushkevich isotherm model at the solid/solution interface: a theoretical analysis. J. Mol. Liq. 277(2019), 646-648. 
  31. ‏M. Y. Nassar, E. A. Abdelrahman, A. A.  Aly, T. Y. Mohamed, A facile synthesis of mordenite zeolite nanostructures for efficient bleaching of crude soybean oil and removal of methylene blue dye from aqueous media, J. Mol. Liq. 248 (2017), 302-313.
  32. Y. Wang, Y. Zhang, S. Li, W. Zhong, W. Wei, Enhanced methylene blue adsorption onto activated reed-derived biochar by tannic acid. J. Molecular Liquids. 268 (2018), 658-666.
  33. E. Alver, A. Ü. Metin, F. Brouers, Methylene blue adsorption on magnetic alginate/rice husk bio-composite, Int. J. Biological Macromol. 154(2020), 104-113.
  34. Y. Abshirini, R. Foroutan, H. Esmaeili, Cr (VI) removal from aqueous solution using activated carbon prepared from Ziziphus spina–christi leaf, Materials Res. Express. 6(2019), 45-60.
  35. R. Foroutan, R. Mohammadi, A. S. Adeleye, S. Farjadfard, Z. Esvandi, H. Arfaeinia, G.A. Sorial, B. Ramavandi, S. Sahebi, Efficient arsenic (V) removal from contaminated water using natural clay and clay composite adsorbents, Environ. Sci. Pollut. Res. 26(2019), 29748-29762.
  36. A. Djelad, A. Mokhtar, A. Khelifa, A. Bengueddach, M. Sassi, Alginate-whey an effective and green adsorbent for crystal violet removal: Kinetic, thermodynamic and mechanism studies. Int. J. Biol. Macromol. 139 (2019), 944-954.
  37. H. J. Kumari, P. Krishnamoorthy, T. Arumugam, S. Radhakrishnan, D. Vasudevan, An efficient removal of crystal violet dye from waste water by adsorption onto TLAC/Chitosan composite: a novel low cost adsorbent. Int. J. Biol. Macromol. 96(2017), 324-333.
  38. O. S. Amodu, T. V. Ojumu, S. K. Ntwampe, O. S. Ayanda, Rapid adsorption of crystal violet onto magnetic zeolite synthesized from fly ash and magnetite nanoparticles. J. Encapsulation and Adsorpt. Sci. 5(2015), 191. ‏
  39. M. Noori, M. Tahmasebpoor, Effective parameters on the formation of natural zeolite-based granules to remove cationic dyes from contaminated water, iran. J. Polym. Sci. Technol. 34(2021), 267-279.
  40. S. Hamidzadeh, M. Torabbeigi, S. J. Shahtaheri. Removal of crystal violet from water by magnetically modified activated carbon and nanomagnetic iron oxide. J. Environ Health Sci Eng. 2(2015), 8-13.
  41. I. Safarik, K. Horska, M. Safarikova, Magnetically modified spent grain for dye removal. J. Cereal Sci.  53(2011), 78–80.
  42. R. Ahmad, Studies on adsorption of crystal violet dye from aqueous solution onto coniferous pinus bark powder (CPBP). J. Hazard. Mate. 171 (2009), 767–773.
  43. G. O. El-Sayed, Removal of methylene blue and crystal violet from aqueous solutions by palm kernel fiber. Desalin. 272(2011), 225-232.