بررسی اثر هیبرید نانولایه های گرافن اکساید /تالک بر آبگریزی و مقاومت به خوردگی طولانی مدت پوشش اپوکسی بر زیرآیند فولادی

نوع مقاله : مقاله پژوهشی

نویسندگان

1 گروه شیمی کاربردی، دانشکده علوم پایه، دانشگاه گیلان، رشت، ایران، صندوق‌پستی: 13776-41996

2 مرکز تحقیقات راه، مسکن و شهرسازی، تهران، صندوق‌پستی: 1696-13145

چکیده

در این تحقیق، هدف تهیه ی یک نانوساختار هیبریدی شامل MLGO و تالک با خاصیت آب گریزی و بدست آوردن یک پوشش اپوکسی مقاوم به خوردگی با خاصیت چسبندگی بالا به بستر فولاد در ترکیب درصدهای وزنی پایین هست که مورد بررسی دقیق و طولانی مدت خواص مقاومت به خوردگی قرار گرفت. سه پوشش اپوکسی حاوی 5/0، 1 و5/1درصد وزنی MLGO/Talc تهیه و با استفاده ازآزمونهای مه نمکی، طیفسنجی امپدانس الکتروشیمیایی، پلاریزاسیون، زاویه تماس، آنالیزFT-IR ، AFM و آنالیز TGA مورد بررسی قرار گرفتند. نتایج حاصل از این آنالیز ها و تحلیل و بررسی آن ها نشان دادند که در حضور 1 درصد وزنی از MLGO/Talc بیشترین کارایی مقاومت به خوردگی حاصل می شود. بر اساس تست زاویه تماس آب، مقدار زاویه تماس 03/94 در این نانوپوشش بیانگر خاصیت آبگریزی نسبتاً بالا است. همچنین بعد از 10 ماه غوطه وری در محلول سدیم کلراید 5/3% وزنی مقاومت امپدانس نانوپوشش مذکور بیش از 108 Ω cm2 بود که نشان دهنده ی کارایی بالای حفاظت از خوردگی این نانوپوشش است.

کلیدواژه‌ها


عنوان مقاله [English]

Investigation of the Effect of Hybrid Multi-layered Graphene Oxide/talc on Hydrophobicity and Long-term Corrosion Resistance of Epoxy Coatings on Steel Substrates

نویسندگان [English]

  • S. Hosseini Keleshteri 1
  • S. Mohammadi 1
  • Sh. Shahidi 2
1 Department of Chemistry, Faculty of Science, University of Guilan, P.O. Box: 41996-13776, Rasht, Iran
2 Organic Chemistry, Road, Housing and Urban Development Research Center, P.O.Box: 13145-1696, Tehran, Iran
چکیده [English]

This research aims to prepare a hybrid nanostructure including multi-layered graphene oxide and talc (MLGO/Talc) with hydrophobicity to obtain a corrosion-resistant epoxy coating with high adhesion to the steel substrate in low weight percentages. This coating was subjected to a detailed and long-term corrosion study. Three epoxy coatings containing 0.5, 1.5 and 1.5 wt. % of MLGO/Talc were prepared and analyzed using a salt spray, electrochemical impedance spectroscopy, polarization, contact angle, Fourier transform infrared spectroscopy, Atomic force microscopy, and Thermogravimetric analysis. Their analysis showed that the highest corrosion resistance performance is obtained in the presence of 1 wt. % of MLGO / Talc. Based on the water contact angle test, the contact angle value of 94.03 in this nano-coating indicates a hydrophobic property. Also, after 10 months of immersion in sodium chloride solution, 3.5 % by weight, the impedance resistance of the nano-coating was more than 108 Ω cm2, which indicates the high corrosion protection efficiency of this nano-coating.

کلیدواژه‌ها [English]

  • Multi
  • layered graphene oxide
  • talc nano
  • hybrid Hydrophobicity Adhesion Long
  • term corrosion resistance Epoxy Carbon steel
  1. Y. H. Yu, Y. Y. Lin, C. H. Lin, C. C. Chan, Y. C. Huang, High-performance polystyrene/graphene-based nano-composites with excellent anti-corrosion properties. Polym. Chem. 5(2) (2014) 535-550.
  2. G. Christopher, M. A. Kulandainathan, G. Harichandran, Comparative study of effect of corrosion on mild steel with waterborne polyurethane dispersion containing graphene oxide versus carbon black nanocomposites. Prog. Org. Coat. 89 (2015). 199-211.
  3. A. A. Javidparvar, R. Naderi, B. Ramezanzadeh, Incorporation of graphene oxide nanoparticles modified with benzimidazole into an epoxy polyamide coating to enhance the physical-mechanical properties. J. Color Sci. Tech. 13(2020), 341-352. [In Persian]
  4. M. Ganjaee Sari, M. Rostami, S. Khamseh, Poly(amidoamine)-grafted Graphene oxide/epoxy                nanocomposite: thermal/ mechanical characteristics and viscoelastic properties. Prog. Color Colorants Coat. 15 (2022), 157-174.
  5. M. Ehsanjoo, S. Mohammadi, N. Chaibakhsh Langroodi, A Review on the role of nanoparticles in improvement of anti-corrosion properties of zinc rich coatings. J. Stud. Color World, 9(2019), 27-44. [In Persian]
  6. F. A. Ghauri, M. A. Raza, M. S. Baig, S. Ibrahim. Corrosion study of the graphene oxide and reduced graphene oxide-based epoxy coatings. Mater. Res. Express. 4(12) (2017), 125601.
  7. T. S. Qureshi, D. K. Panesar. Impact of graphene oxide and highly reduced graphene oxide on cement based composites. Constr. Build. Mater. 206 (2019) 71-83.
  8. Y. Su, V.G. Kravets, S. L. Wong, J. Waters, A. K. Geim, R. R. Nair. Impermeable barrier films and protective coatings based on reduced graphene oxide. Nature communications, 5(2014) 1-5.
  9. R. Flyunt, W. Knolle, A. Kahnt, C. E. Halbig, A. Lotnyk, T. Häupl, A. Prager, S. Eigler, B. Abel. High quality reduced graphene oxide flakes by fast kinetically controlled and clean indirect UV-induced radical reduction. Nanoscale. 8(14) (2016) 7572-7579.
  10. Y. Harima, S. Setodoi, I. Imae, K. Komaguchi, Y. Ooyama, J. Ohshita, H.Mizota, J.Yano. Electrochemical reduction of graphene oxide in organic solvents. Electrochim. Acta. 56(2011) 5363-5368.
  11. A. T. Smith, A. M. LaChance, S. Zeng, B. Liu, L. Sun. Synthesis, properties, and applications of graphene oxide/reduced graphene oxide and their nanocomposites. Nano. Mater. Sci. 1(1), (2019) 31-47.
  12. A. J. Glover, M. Cai, K. R. Overdeep, D. E. Kranbuehl, H. C. Schniepp. In situ reduction of graphene oxide in polymers. Macromol. 44(2011) .9821-9829.
  13. H. Guo, F. Liu, J. Zhao. In situ iodoalkane-reduction of Graphene oxide in polymer matrix: an easy and effective approach for the fabrication of 20 S. SHAHIDI ET AL.conductive composites. J. Mater Chem c.(2015) 11531–11539.
  14. A. Liu, T. Kuila, N. H. Kim. In situ synthesis of the reduced Graphene oxide polyethyleneimine compo-site and its gas barrier properties. J. Mater Chem A.(2013) 3739–3746.
  15. M . Khan, AH . Al-Marri, Green approach for the effective reduction of Graphene oxide using Salvadora persica L. Root (Miswak) extract. Nano-Scale Res Lett. (2015) 281–290.
  16. S. Choi, J.Yang,  Y, Kim. Microwave-accelerated synthesis of silica nanoparticle-coated graphite nano-platelets and properties of their epoxy composites. Compos Sci. Technol. (2014) 8–15.
  17. Ramezanzadeh, H. Haeri, M. Ramezanzadeh, A facile route of making silica nanoparticles-covered Graphene oxide nanohybrids (SiO2-GO); fabrication of SiO2-GO/epoxy composite coating with superior barrier and corrosion protection performance. Chem Eng. J. 303 (2016) 511–528.
  18. Y. Wang, B. Chi, C. Xiao, Graphene oxide@ Mg3Si4O9(OH)10: a hierarchical layered sili cate nanocomposite with superior adsorption capacity for enriching Eu(III). Chem. Eng. J. 338 (2018):628–635.
  19. A. Mierczynska-Vasilev, D. A. Beattie. The effect of impurities and cleavage characteristics on talc hydrophobicity and polymer adsorption. Int. J. Miner. Process. 118 (2013) 34-42.
  20. N. D. Barcelos, A. R. Cadore, A. B. Alencar. Infrared fingerprints of natural 2D Talc and plasmon−phonon coupling in Graphene−Talc heterostructures. ACS Photonics. 5 (2018) 1912–1918.
  21. Rotenberg, A. J. Patel, D. Chandler. Molecular expla-nation for why talc surfaces can be both hydrophilic and hydrophobic. J. Am Chem. Soc. 133(2011) 20521–20527.
  22. Y. Liu, Y. Chen. Anticorrosion performance of epoxy-resin coating incorporating talcum powder loaded with sodium tungstate. Int J. Electrochem. Sci. 13 (2018) 530–541.
  23. A. Bahrani, R. Naderi, M. Mahdavian. Chemical modifi-cation of Talc with corrosion inhibitors to enhance the corrosion protective properties of epoxy-ester coating. Prog Org Coat.120 (2018) 110–122.
  24. F. A. Ghasemi, I. Ghasemi, S. Menbari.Optimization of mechanical properties of polypropy lene/Talc/Graphene composites using response surface methodology. Polym Test. 53(2016) 283–292.
  25. S. Habib, E. Fayyed, R. Shakoor. Improved self-healing performance of polymeric nanocomposites reinforced with talc nanoparticles (TNPs) and urea-formaldehyde microcapsules (UFMCs). Arab. J. Chem. 14(2021) 102926.
  26. P. S. M. Effects of talc on fire retading, thermal degradation and water resistance of intumescent coating. Appl. Clay Sci. (2017) 146,350-361.
  27. J. K. Katiyar, S. K. Sinha, A. Kumar, Friction and wear durability study of epoxy-based polymer (su-8) composite coatings with talc and graphite as fillers. Wear. (2016) 362-363.
  28. F. Ghasemi, I. Ghasemi , S. Menbari , M. Ayaz, A. Ashori, Optimization of mechanical properties of polypropylene/talc/ graphene composites using response surface methodology. Polym. Test. 53(2016), 283-292.
  29. A. Rathaur, V. Patel, J. K. Katiyar, Tribo-mechanical properties of graphite/talc modified polymer composite bearing balls, Mater. Res. Express 7 (2020), 015305.
  30. C. Shen, H. Wang, T. Zhang. Silica coating onto Graphene for improving thermal conductivity and electrical insulation of Graphene/polydimethylsilox-ane nanocomposites. J. Mater Sci Technol. 35 (2019) 36–43.
  31. R. Sun, H. Yao, HB. Zhang HB. Decoration of defect free Graphene nanoplatelets with alumina for thermally conductive and electrically insulating epoxy composites. Compos Sci Technol. 137(2016) 16–23.
  32. X. Pu, H. B. Zhang, X. Li. Thermally conductive and electrically insulating epoxy nanocomposites with silica-coated Graphene. RSC Adv. 4(2014), 15297–15303.
  33. Sh. Shahidi, B. Mohammadi, S. Mohammadi, Es. Vessallya, The effect of the hybrid multi-layered Graphene oxide/Talc as a hydrophobic agent in epoxy coating, Plast. Rubber Compos. 51(2022), 13-34.
  34. M. Moradi Kooshksara, S. Mohammadi, Investigation of the in-situ solvothermal reduction of multi-layered Graphene oxide in epoxy coating by acetonitrile on improving the hydrophobicity and corrosion resistance. prog. Org. Coat. 159 (2021) 106432.
  35. S. Mohammadi,  F. Afshar Taromi, H. Shariatpanahi, J. Neshati,  M. Hemmati, Electrochemical and anticorrosion behavior of functionalized graphite nanoplatelets epoxy coating, J. Ind. Eng. Chem. 20 (2014), 4124-4139.
  36. S. Z. Haeri, B. Ramezanzadeh, M. Asghari, A novel fabrication of a high performance SiO2-graphene oxide (GO) nanohybrids: Characterization of thermal properties of epoxy nanocomposites filled with SiO2-GO nanohybrids. J. Colloid Interface Sci ,493 (2017), 111-122.
  37. S. Pourhashem, M. R. Vaezi, A. Rashidi. Investigating the effect of SiO2-graphene oxide hybrid as inorganic nanofiller on corrosion protection properties of epoxy coatings. Surf. Coat. Technol., 311 (2017), 282-294.
  38. M. E. Ossman, M. S. Mansour, M. A. Fattah, N. Taha, Y. Kiros. Peanut shells and talc powder for removal of hexavalent chromium from aqueous solutions, Bulg. Chem. Commun., 46 (2014), 629 – 639.
  39. N.H. Jamil, S. Palaniandy,  Comparative study of water-based and acid-based sonications on structural changes of talc. Appl. Clay Sci.51 (2011), 399-406.
  40. S. Z. Haeria, M. Asgharia, B. Ramezanzadeh, Enhancement of the mechanical properties of an epoxy composite through inclusion of graphene oxide nanosheets functionalized with silica nanoparticles through one and two steps sol-gel routes. Prog. Org. Coat. 111 (2017), 1-12.
  41. B. Ramezanzadeh, H. Haeri, M. Ramezanzadeh, A facile route of making silica nanoparticles-covered graphene oxide nanohybrids (SiO2-GO); fabrication of SiO2-GO/epoxy composite coating with superior barrier and corrosion protection performance. Chem. Eng. Trans. 303 (2016) 511-528.
  42. M. Cypryk, Y. Apeloig, Mechanism of the Acid-Catalyzed Si-O bond cleavage in siloxanes and siloxanols. a theoretical study. Organometallics, 21(2002), 2165-2175.
  43. S. Dikmen, B. Ersoy, Z. Dikmen, Adsorption behavior of ionic and non-ionic surfactants onto talc a naturally hydrophobic mineral a comparative study. J. Sci. Tech. Appl. Sci. Eng. 21 (2020) 139-152.
  44. G. B. Olowojoba, S. Eslava, E. S. Gutierrez, A. J. Kinloch.C. Mattevi, V. G. Rocha, In situ thermally reduced graphene oxide/epoxy composites: thermal and mechanical properties. Appl. Nanosci. 6(7) (2016.) 1015-1022.
  45. U. S.Tayade, A. U. Borse, J. S. Meshram, Green reduction of graphene oxide and its applications in band gap calculation and antioxidant activity. Green Materials. 7 (2019) 143-155.
  46. G. L. Hornyak. A. K. Rao. Fundamentals of Nanoscience (and Nanotechnology). In Nanoscience in Dermatology (2016) 15-29.
  47. Z. Lin,  Y. Yao, Z. Li, Liu, Z. Li, C.P. Wong Solvent-assisted thermal reduction of graphite oxide. J. Phys. Chem. C, 114 (2010), 14819-14825.
  48. M. H. Wang , Q. Li , X. Li, Effect of oxygen-containing functional groups in epoxy/reduced graphene oxide composite coatings on corrosion protection and antimicrobial properties. App. Surf. Sci. 448 (2018) 351-361.
  49. J. T. Zhang, J. M. Hu, J. Zhang, C. N. Cao. Studies of impedance models and water transport behaviors of polypropylene coated metals in NaCl solution. Prog. Org. Coat, 49(2004), 293-301
  50. R. Ding, J. Jiang, T. Gui. Study of impedance model and water transport behavior of modified solvent-free epoxy anticorrosion coating by EIS. J. Coat Technol Res, 13(2016) 501-515.
  51. S. Skale,V. Doleček, M. Slemnik, Substitution of the constant phase element by Warburg impedance for protective coatings, Corros. Sci. 49 ( 2007), 1045-1055 .
  52. X. Wang, L. Zhi, K. Müllen. Transparent, conductive graphene electrodes for dye-sensitized solar cells. Nano letters. 8(2008), 323-327.
  53. G. Gonçalves, M. Vila, I. Bdikin, Breakdown into nanoscale of graphene oxide: confined hot spot atomic reduction and fragmentation. Scientific reports. 4(2014), 1-8.
  54. Z. Kefallinou, S. B. Lyon, S. R. Gibbon A bulk and localised electrochemical assessment of epoxy-phenolic coating degradation. Prog. Org. Coat. 102(2017), 88-98.
  55. J. Balaji, M. G. Sethuraman, Chitosan-doped-hybrid/TiO2 nanocomposite based solgel coating for the corrosion resistance of aluminum metal in 3.5 % NaCl medium, Int. J. Biol. Macromol. 104 (2017), 1730–1739.