تولید نانوالیاف پلی‌اکریلیک اسید (PAA)/ دکستران اصلاح‌شده با آنیلین به منظور جذب فلز سرب از محلول‌های آبی

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشکده نساجی، دانشگاه آزاد اسلامی واحد علوم و تحقیقات، تهران، ایران

2 دانشکده پلیمر و نساجی، دانشگاه آزاد اسلامی واحد تهران جنوب، تهران، ایران

3 دانشکده نساجی، دانشگاه آزاد اسلامی واحد یزد، یزد، ایران

چکیده

در این پژوهش، نانوالیاف پوسته هسته پلی اکریلیک اسید (PAA) / دکستران - پلی آنیلین با ترکیب روش‌های الکتروریسی و پلیمراسیون درجا تهیه شده و قابلیت جذب فلز سنگین این نانو الیاف مورد بررسی قرار گرفته است. نتایج نشان داد که پلی‌اکریلیک اسید و دکستران کاملا به روش عملیات حرارتی که منجربه انجام واکنش استری می‌شود، شبکه‌ای می‌شوند. پلی‌آنیلین با ساختار پوسته مانند بر روی سطح نانوالیاف قرار گرفته و موجب تشکیل نانوالیافی متخلخل با ناحیه سطح زیاد می‌شود. میزان تخلخل موجود بر روی سطح نانوالیاف با حذف نانوذرات کربنات کلسیم در طول فرآیند پلیمراسیون افزایش یافته است. بررسی متغیرهای موثر بر فرآیند جذب نشان داد که بازده جذب از محیط با افزایش مقدار جاذب افزایش یافته و به تدریج به مقدار ثابتی می‌رسد. با افزایش غلظت فلز سرب مقدار درصد حذف کاهش می‌یابد و میزان فلز سرب حذف شده در مقادیر مختلف
pH  متفاوت است. نانوالیاف HT-PAA/dextran ظرفیت جذب نسبتا بالای را برای سرب نشان داده است که بعد از پلیمریزاسیون آنیلین بر روی سطح نانوالیاف به 951.1 میلی‌گرم بر گرم افزایش یافته است. بیشینه ظرفیت جذب 1111.11 میلی‌گرم بر گرم برای جذب فلز سرب توسط نانوالیاف سنتزی به دست آمد. رفتار جذبی نانوالیاف سنتزی از ایزوترم لانگمیور و سینتیک شبه مرتبه دوم پیروی کرد.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Preparation of Polyacrylic Acid (PAA) / Dextran Nanofibres Modified with Aniline to the Removal of Metal (Pb) from Aqueous Solutions

نویسندگان [English]

  • M.R. Yarandpour 1
  • A. Rashidi 1
  • R. Khajavi 2
  • N. Eslahi 1
  • M. E. Yazdanshenas 3
1 Department of Textile, Science and Research Branch, Islamic Azad University, Tehran, Iran
2 Department of Polymer & Textile, South Tehran Branch, Islamic Azad University, Tehran, Iran
3 Department of Textile, Yazd Branch, Islamic Azad University, Yazd, Iran
چکیده [English]

In this paper, mesoporous PAA/dextran-polyaniline core-shell nanofibers were prepared with the combination of electrospinning and in-situ polymerization methods and their heavy metal adsorption ability was investigated. The result showed that PAA and dextran can be fully crosslinked through the esterification reaction via a heat-treatment method. Polyaniline with flake-like structure was deposited on the nanofiber surface resulted in high surface area and mesoporous structure of nanofibers. The number of pores was increased by removing the calcium carbonate nanoparticles incorporated on the nanofiber surface during the polymerization process. Investigation of the variables affecting the adsorption process showed that the adsorption efficiency increased with increasing adsorbent and gradually reached a constant value. As the concentration of lead metal decreased, the percentage of removal decreased and the amount of removed metal varied at different pH values. HT-PAA / dextran nanofibers showed relatively high adsorption capacity for Pb, which increased to 951.1 mg / g after aniline polymerization on the surface of the nanofibers. The synthesized nanofibers showed a high maximum adsorption capacity of 1111.11 mg/g for Pb obtained from the Langmuir isotherm model.

کلیدواژه‌ها [English]

  • Polyacrylic acid
  • Dextran
  • Polyaniline
  • Adsorption kinetic
  • Adsorption isotherm
  • In-situ polymerization
  1. Y. Bao, X. Yan, W. Du, X. Xie, Z. Pan, J. Zhou, L. Li, Application of amine-functionalized MCM-41 modified ultrafiltration membrane to remove chromium (VI) and copper (II). Chem. Eng. J. 281(2015), 460–467.
  2. Y. Yan, Q. An, Z. Xiao, W. Zheng, Sh. Zhai, Flexible core-shell/bead-like alginate@PEI with exceptional adsorption capacity, recycling performance toward batch and column sorption of Cr (VI). Chem. Eng. J. 313(2017), 475–486.
  3. I. Ihsanullah, F. A. Al-Khaldi, B. Abusharkh, M. Khaled, M. A. Atieh, M. S. Nasser, T. Laoui, Tawfik A. Saleh, S. Agarwal, I. Tyagi, V. Kumar Gupta, Adsorptive removal of cadmium(II) ions from liquid phase using acid modified carbon-based adsorbents. J. Mol. Liq. 204(2015), 255–263.
  4. R. Dawson, A. Laybourn, R. Clowes, Y. Z. Khimyak, D. J. Adams, A. I. Cooper, Functionalized Conjugated Microporous Polymers. Macromol. 42(2009), 8809- 8816.
  5. A. Almasian, M. L. Jalali, Gh. Chizari Fard, L. Maleknia, Surfactant grafted PDA-PAN nanofiber: Optimization of synthesis, characterization and oil absorption property. Chem. Eng. J. 326(2017), 1232–1241.
  6. E. Antoniou, M. Tsianou, Solution Properties of Dextran in Water and in Formamide. J. Appll. Polym. Sci. 125(2012), 1681–1692.
  7. A. Almasian, Gh. Chizari Fard, M. Parvinzadeh Gashti, M. Mirjalili, Z. Mokhtari Shourijeh, Surface modification of electrospun PAN nanofibers by amine compounds for adsorption of anionic dyes. Desalin. Water Treat. 57(2016), 10333–10348.
  8. Sh. Xiao, M. Shen, H. Ma, R. Guo, Meifang Zhu, Shanyuan Wang, Xiangyang Shi, Fabrication of Water-Stable Electrospun Polyacrylic Acid-Based Nanofibrous Mats for Removal of Copper (II) Ions in Aqueous Solution. J. Appl. Polym. Sci. 116(2010), 2409–2417.
  9. F. Cengiz-Çallıoğlu, Dextran nanofiber production by needleless electrospinning process, e-Polymers. 14(2014), 5–13.
  10. H. Jiang, D. Fang, B. S. Hsiao, B. Chu, W. Chen, Optimization and characterization of dextran membranes prepared by electrospinning, Biomacromolecules. 5(2004), 326-333.
  11. Celile Demirbilek, Cemile Ozdemir Dinc, Synthesis of diethylaminoethyl dextran hydrogel and its heavy metal ion adsorption characteristics. Carbohydr. Polym. 90(2012), 1159– 1167.
  12. E. Fosso-Kankeu, H. Mittal, Shivani B. Mishra, Ajay K. Mishra, Gum ghatti and acrylic acid based biodegradable hydrogels for the effective adsorption of cationic dyes. J. Ind. Eng. Chem. 22(2015), 171–178.
  13. A. Almasian, M. Parvinzadeh Gashti, M. E. Olya, Gh. Chizari Fard, Poly(acrylic acid)-zeolite nanocomposites for dye removal from single and binary systems, 2016, 57, 20837–20855.
  14. S. Zhang, M. Zeng, W. Xu, J. Li, J. Li, J. Xu, X. Wang, Polyaniline nanorods dotted on grapheme oxide nanosheets as a novel super adsorbent for Cr(VI). Dalton Trans. 41(2013), 7854-7858.
  15. S. B. Teli, S. Molina, E. G. Calvo, A. E. Lozano, J. de Abajo, Preparation, characterization and antifouling property of polyethersulfone–PANI/PMA ultrafiltration membranes, Desalin. 299(2012), 113–122.
  16. Gh. Chizari Fard, M. Mirjalili, F. Najafi, Hydroxylated α-Fe 2 O 3 nanofiber: Optimization of synthesis conditions, anionic dyes adsorption kinetic, isotherm and error analysis. J. Taiwan Inst. Chem. Eng. 70(2017), 188–199.
  17. K. Niesz, P. Yang, G. A. Somorjai, Sol-gel synthesis of ordered mesoporous alumina, Chem. Commun. (2005), 1986–1987.
  18. H. Zhu, D. Chen, S. Yang, N. Li, Q. Xu, H. Li, L. Wang, J. He, J. Jiang, J. Lu, A versatile and cost-effective reduced graphene oxide-crosslinked polyurethane sponge for highly effective wastewater treatment. RSC Adv. 6(2016), 38350-38355.
  19. H. Jiang, D. Fang, B. S. Hsiao, B. Chu, W. Chen, Optimization and Characterization of Dextran Membranes Prepared by Electrospinning. Biomacromolecules. 5(2004), 326-333.
  20. Sh. Xiao, M. Shen, R. Guo, Qingguo Huang, Sh. Wang, X. Shi, Fabrication of multiwalled carbon nanotube-reinforced electrospun polymer nanofibers containing zero-valent iron nanoparticles for environmental applications. J. Mater. Chem. 20(2010), 5700–5708.
  21. A. Almasian, N. M. Mahmoodi, M. E. Olya, Tectomer grafted nanofiber: Synthesis, characterization and dye removal ability from multicomponent system. J. Ind. Eng. Chem. 32(2015), 85–98. 
  22. A. Haider. S. Haider. I. K. Kang, A comprehensive review summarizing the effect of electrospinning parameters and potential applications of nanofibers in biomedical and biotechnology. Arabian J. Chem. 2015.
  23. P. A. Padmanabhan, D. S. Kim, D. Pak, S. J. Sim, Rheology and gelation of water-insoluble dextran from Leuconostoc mesenteroides NRRL B-523, Carbohydrate Polymers, 2003, 53, 459–468.
  24. S. Netsop, S. Niamsanit, D. Sakloetsakun, N. Milintawisamai, Hindawi, Characterization and Rheological Behavior of Dextran from Weissella confusa R003. Int. J. Polym. Sci. (2018), 1-10.
  25. Y. Bai, Z. H. Huang, X. Yu, K. Kaneko, F. Kang, Micro-mesoporous graphitic carbon nanofiber membranes. Carbon, 132(2018), 746-748.
  26. Q. R. Fang, T. A. Makal, M. D. Young, H. C. Zhou, Recent Advances In The Study of Mesoporous Metal-Organic Frameworks. J. Crit. Discussion Curr. Lit. 31(2010), 165-195.
  27. A. Almasian, F. Najafi, L. Maleknia , M. Giahi, Mesoporous MgO/PPG hybrid nanofibers:synthesis, optimization, characterization and heavy metal removal property. New J. Chem. 42(2018), 2013-2029.
  28. D. Zhua, K. Cheng, Y. Wang, D. Sun, L. Gan, T. Chen, J. Jiang, M. Liu, Nitrogen-doped porous carbons with nanofiber-like structure derived from poly (aniline-co-p-phenylenediamine) for supercapacitors. Electrochim. Acta, 224(2017), 17-24.
  29.  A. Berenjian , L. Maleknia, Gh. Chizari Fard , A. Almasian,  Mesoporous carboxylated Mn2O3 nanofibers: Synthesis, characterization and dye removal property. J. Taiwan Inst. Chem. Eng. 86(2018), 57–72. 
  30. A. Almasiana, Gh. Chizari Farda, M. Mirjalilib, M. Parvinzadeh Gashti, Fluorinated-PAN nanofibers: Preparation, optimization, characterization and fog harvesting property. J. Ind. Eng. Chem. 62(2018), 146–155.
  31. D. Hussain, F. Loyal, A. Greiner, J. H. Wendorff, Structure property correlations for electrospun nanofiber nonwovens. Polym. 51(2010), 3989-3997.
  32. M. Tiana, Y. N. Wang, R. Wanga, A. G. Fane, Synthesis and characterization of thin film nanocomposite forward osmosis membranes supported by silica nanoparticle incorporated nanofibrous substrate. Desalin. 401(2017), 142-150.
  33. A. Almasian, F. Najafi, M. Mirjalili, M. Parvinzadeh Gashti, Gh. Chizari Fard, Zwitter ionic modification of cobalt-ferrite nanofiber for the removal of anionic and cationic dyes, J. Taiwan Ins. Chem. Eng. 67(2016), 306–317.
  34. A. Almasian, M. E. Olya, N. M. Mahmoodi, Synthesis of polyacrylonitrile / polyamidoamine composite nanofibers using electrospinning technique and their dye removal capacity. J. Taiwan Inst. Chem. Eng. 49(2015), 119–128.
  35. O. Carp, Luminita Patron, Daniela C. Culita, Petru Budrugeac, Marcel Feder • Lucian Diamandescu, Thermal analysis of two types of dextran-coated magnetite. J.Therm Anal Calorim, 101(2010), 181–187.
  36. R. Z. Ahmed, K. Siddiqui, M. Arman, N. Ahmed, Characterization of high molecular weight dextran produced by Weissella cibaria CMGDEX3. Carbohyd. Polym, 90(2012), 441–446.
  37. J. Santiago-Morales1, G. Amariei1, P. Letón, R. Rosal, Antimicrobial activity of poly(vinyl alcohol)-poly(acrylic acid) electrospun nanofibers. Colloids Surf. B. 146(2016), 144-151.
  38. J. Wang, K. Pan, Emmanuel P. Giannelis, Bing Cao, Polyacrylonitrile/polyaniline core/shell nanofiber mat for removal of hexavalent chromium from aqueous solution: mechanism and applications, RSC Adv. 3(2013), 8978-8987.
  39. P. Daraei, S. S. Madaeni, N. Ghaemi, E. Salehi, M. A. Khadivi, R. Moradian, Bandar Astinchap, Novel polyethersulfone nanocomposite membrane prepared by PANI/Fe3O4 nanoparticles with enhanced performance for Cu(II) removal from water. J. Membr. Sci. 415–416 (2012), 250–259.
  40. I. Poljanšek and MatjažKrajnc, Characterization of Phenol-Formaldehyde Prepolymer Resins by In Line FT-IR Spectroscopy, Acta. Chim. Slov. 52(2005), 238–244.
  41. S. Cavus¸, G. Gurdag, Noncompetitive removal of heavy metal ions from aqueous solutions by poly [2-(acrylamido)-2-methyl-1-propanesulfonic acidco-itaconic acid] hydrogel. Ind. Eng. Chem. Res. 48(2009), 2652–2658.
  42. A. Almasian, M. E. Olya, N. M. Mahmoodi, Preparation and Adsorption Behavior of Diethylenetriamine/Polyacrylonitrile Composite Nanofibers for a Direct Dye Removal. Fibers Polym. 16(2015), 1925-1934.
  43. S. Yari, S. Abbasizadeh, S. E. Mousavi, M. Saei Moghaddam, A. Zarringhalam Moghaddam, Adsorption of Pb (II) and Cu(II) ions from aqueoussolution by an electrospun CeO2nanofiberadsorbent functionalized with mercapto groups. Process Saf. Environ. Prot. 94(2015), 159–171.
  44. N. M. Mahmoodi, J. Abdi, F.Najafi, Gemini polymeric nanoarchitecture as a novel adsorbent: Synthesis and dye removal from multicomponent system. J. Colloid Interface Sci. 400(2013), 88–96.
  45. A. Almasian, Gh. Chizari Fard, M. Parvinzadeh Gashti, M. Mirjalili, Z. Mokhtari Shourijeh, Surface modification of electrospun PAN nanofibers by amine compounds for adsorption of anionic dyes. Desalin. Water Treat. 57(2016), 10333–10348.
  46. O. Gulnaz, A. Kaya, The reuse of dried activated sludge for adsorption of reactive dye. J. Hazard. Mater. 134(2006), 190–196.
  47. Sh. Agarwal, Inderjeet Tyagi, Vinod Kumar Gupta, Fariba Golbaz, Ahmad Nozad Golikand, Omid Moradi, Synthesis and characteristics of polyaniline/zirconium oxide conductive nanocomposite for dye adsorption application. J. Mol. Liq. 218(2016), 494–498.
  48. S. A. Kosa, G. Al-Zhrani, M. A. Salam, Removal of heavy metals from aqueous solutions by multi-walled carbon nanotubes modified with 8-hydroxyquinoline. Chem. Eng. J. 181(2012), 159–168.
  49. K. Suttiponparnit, J. Jiang, M. Sahu, S. Suvachittanont, T. Charinpanitkul, P. Biswas, Role of Surface Area, Primary Particle Size, and Crystal Phase on Titanium Dioxide Nanoparticle Dispersion Properties, Nanoscale. Res Lett 27(2011), 1-8.
  50. G. E. Boyd, A. W. Adamson, L. S. Meyers, The exchange adsorption of ionsfrom aqueous solution by organic zeolites II. Kinetics. J. Am. Chem. Soc. 69(1947), 2836–2848.
  51. A. Seidmohammadi, Gh. Asgari, A. Dargahi, M. Leili, Y. Vaziri, B. Hayati, A. A. Shekarchi, A. Mobarakian, A. Bagheri, S. B. Nazari Khanghah, A. Keshavarzpour. A Comparative Study for the Removal of Methylene Blue Dye from Aqueous Solution by Novel Activated Carbon Based Adsorbents. Prog. Color Colorants Coat. 12(2019), 133-144.
  52. م. صادقی کیاخانی، م. آرامی، ک. قرنجیگ. کاربرد زیست جاذب پلیمری کیتوسان ـ دندریمر در رنگبری مواد رنگزای مستقیم: بهینه‌سازی با استفاده از RSM، بررسی سینتیک و ایزوترم جذب. نشریه علمی علوم و فناوری رنگ. (1391)6، 368-355.
  53. O. Gerçel, A. Ozcan, A. Ozcan, H. Gerçel, Preparation of activated carbon from a renewable bio-plant of Euphorbia rigida by H2SO4 activation and its adsorption behavior in aqueous solutions. Appl Surf Sci. 253(2007), 4843–4852.

  54. E. Rubin, P. Rodriguez, R. Herrero, E. S. de Vicente, Adsorption of methylene blue on chemically modified algal biomass: equilibrium, dynamic, and surface data. J. Chem. Eng. Data. 55(2010), 5707–5714.

  55. M. K. Aroua, C. Y. Yin, F. N. Lim, W. L. Kan, W. M. Daud, Effect of impregnation of activated carbon with chelating polymer on adsorption kinetics of Pb2+. J. Hazard. Mater. 166(2009), 1526–1529.

  56. س.خلقی، خ. بدیعی، س. ا. احمدی. بررسی ایزوترم و سینتیک جذب زیستی رنگزای اسیدی قرمز 14 از محلول آبی با استفاده از گیاه آزولای گونه A.Filiculodes. نشریه علمی علوم و فناوری رنگ. (1391)6، 346-337.

  57. س. لک عیان، ع. بهار لویی، ا. جلیل نژاد، کاربرد پسمان‌های کشاورزی به عنوان جاذب طبیعی در حذف مواد رنگزای صنعتی، نشریه علمی مطالعات در دنیای رنگ، 1395، 6، 27-43.
  58. ف. آریانسب، ش. مظفری، س. ف. هادی. رنگبری مواد رنگزای آنیونی از محلول‌های آبی با استفاده از نانوذرات مغناطیسی پوشش‌داده شده با نشاسته عامل‌دارشده با دی‌تیوکاربامات. نشریه علمی علوم و فناوری رنگ. (1397)12، 72-57.
  59. H. Wang, B. Gao, S. Wang, J. Fang, Y. Xue, K. Yang, Removal of Pb(II), Cu(II), and Cd(II) from aqueous solutions by biochar derived from KMnO4 treated hickory wood, Bioresource Technology, 197(2015), 356–362.
  60. A. Shahat, M. Rabiul Awual, M. Abdul Khaleque, M. Zahangir Alam, M. Naushad, A. M. Sarwaruddin Chowdhury, Large-pore diameter nano-adsorbent and its application for rapid lead(II) detection and removal from aqueous media, Chem. Eng. J. 273(2015), 286–295.
  61. M. Ghasemi, M. Naushad, N. Ghasemi, Y. Khosravi-fard, Adsorption of Pb(II) from aqueous solution using new adsorbents prepared from agricultural waste: Adsorption isotherm and kinetic studies, J. Ind. Eng. Chem. 20(2014), 2193-2199.
  62. M. Naushad, Surfactant assisted nano-composite cation exchanger: Development, characterization and applications for the removal of toxic Pb2+ from aqueous medium, Chem. Eng. J. 235(2014), 100–108.
  63. M. Ghasemi, M. Naushad, N. Ghasemi, Y. Khosravi-fard, A novel agricultural waste based adsorbent for the removal of Pb(II) from aqueous solution: Kinetics, equilibrium and thermodynamic studies. J. Ind. Eng. Chem. 20(2014), 454-461.
  64. M. Rabiul Awual, G. E. Eldesoky, T. Yaita, M. Naushad, H. Shiwaku, Z A. AlOthman, S. Suzuki, Schiff based ligand containing nano-composite adsorbent for optical copper(II) ions removal from aqueous solutions. Chem. Eng. J. 279(2015), 639–647.