تخریب ماده رنگزای راکتیو نارنجی 7 با استفاده از الکترود تیتانیم پوشش داده شده با نانوذرات دی اکسید قلع و بهینه‌سازی به روش سطح پاسخ

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشکده شیمی، دانشگاه سمنان، سمنان، ایران

2 دانشکده شیمی، دانشگاه بوعلی سینا، همدان، ایران

چکیده

در این پژوهش، تخریب ماده رنگزای راکتیو نارنجی 7 در محلول‌های آبی بررسی شد. فرآیند الکترولیز با استفاده از روش سطح پاسخ و الکترود تیتانیم پوشش داده شده با نانوذرات دی اکسید قلع (nano- SnO2/Ti)  به عنوان آند بهینه‌سازی شد. الکترود nano- SnO2/Ti با استفاده از روش لایه نشانی الکتروفورتیک تهیه و با روش میکروسکوپ الکترونی روبشی نشر میدانی شناسایی شد. pH اولیه، چگالی جریان، زمان واکنش و غلظت الکترولیت به عنوان متغیرهای مستقل و بازده حذف ماده رنگزا به عنوان تابع پاسخ، در روش طراحی مرکب مرکزی در نظر گرفته شدند. براساس آنالیز واریانس، مقدار بالای ضریب تعیین (0.987R2 = ) نشان‌دهنده تطابق خوب مقادیر آزمایشگاهی و مقادیر تجربی است. در شرایط بهینه بیشینه بازده حذف ماده رنگزا (90.1%) بعد از 25 دقیقه به دست آمد و کل کربن آلی بعد از 60 دقیقه به میزان 33.2% کاهش یافت.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Degradation of C.I. Reactive Orange 7 Using Titanium Electrode Coated with Nano-SnO2 Particles and Optimization by RSM

نویسندگان [English]

  • F. Nabizadeh Chianeh 1
  • J. Basiri Parsa 2
1 Faculty of Chemistry, Semnan University, Semnan, Iran.
2 Faculty of Chemistry, Bu-Ali Sina University, Hamedan, Iran
چکیده [English]

In this work, degradation of C.I. Reactive Orange 7 dye in aqueous solutions was investigated. The electrolysis process optimized based on titanium electrode coated with SnO2 nanoparticles (nano-SnO2/Ti) as anode using response surface methodology. The nano– SnO2/Ti electrode was prepared using electrophoretic deposition (EPD) method and characterized by field emission scanning electron microscopy (FE-SEM). The initial pH, current density, reaction time and electrolyte concentration were selected as independent variables in central composite design while color removal efficiency was considered as the response function. Based on analysis of variance (ANOVA), the coefficient of determination value (R2=0.987) was high showing that the experimental values fitted well with the predicted values. In optimum conditions, maximum color removal efficiency (90.1%) was obtained after 25 minute; and the total organic carbon (TOC) was reduced to 32.2% after 60 minute. 

کلیدواژه‌ها [English]

  • Nano-SnO2/Ti electrode
  • Electrophoretic deposition
  • Response surface methodology
  • Reactive Orange 7
  1. X. Huang, G. Zhao, M. Liu, F. Li, J. Qiao, S. Zhao, Highly sensitive electrochemical determination of 1-naphthol based on high-index facet SnO2 modified electrode. Electrochim. Acta, 83 (2012), 478-484.
  2. L. Xu, M. Li, W. Xu, Preparation and characterization of Ti/SnO2-Sb electrode with copper nanorods for AR 73 removal. Electrochim. Acta. 166 (2015), 64-72.
  3. J.-H. Lee, N.-G. Park, Y.-J. Shin, Nano-grain SnO2 electrodes for high conversion efficiency SnO2–DSSC. Sol. Energ. Mat. Sol. C, 95 (2011), 179-183.
  4. W. Chen, F. Sun, Z. Zhu, Z. Min, W. Li, Nanoporous SnO2 prepared by a photochemical strategy: Controlling of specific surface area and photocatalytic activity in degradation of dye pollutants. Micropor. Mesopor. Mat. 186 (2014), 65-72.
  5. L. Guangzhong, L. Gang, W. Hui, X. Changshu, Z. Jiandong, L. Qian, T. Huiping, Preparation of Sb doped nano SnO2/Porous Ti electrode and its degradation of methylene orange. Rare. Metal. Mat. Eng. 44 (2015), 1326-1330.
  6. G. Yang, Z. Yan, T. Xiao, Preparation and characterization of SnO2/ZnO/TiO2 composite semiconductor with enhanced photocatalytic activity. Appl. Surf. Sci. 258 (2012), 8704-8712.
  7. ع.غلامی.آکرادی، س، ه، بهرامی، م،آرامی، ا، پژوتن، حذف کاتالیزوری نوری ماده رنگزا توسط الکترود اصلاح شده با نانوذرات دی‌اکسیدتیتانیم-اکسیدگرافن و بهینه‌سازی به روش رویه پاسخ. نشریه علمی علوم و فناوری رنگ. (1396) 11،187 -202.
  8. J. Fan, G. Zhao, H. Zhao, S. Chai, T. Cao, Fabrication and application of mesoporous Sb-doped SnO2 electrode with high specific surface in electrochemical degradation of ketoprofen. Electrochim. Acta. 94 (2013), 21-29.
  9. P. Duverneuil, F. Maury, N. Pebere, F. Senocq, H. Vergnes, Chemical vapor deposition of SnO2 coatings on Ti plates for the preparation of electrocatalytic anodes. Surf. Coat. Tech. 151–152 (2002), 9-13.
  10. ف، نبی‌زاده چیانه، ج، بصیری پارسا، حذف ماده رنگزای آزو با استفاده از آندهایMWCNTs/Ti و MWCNTs-وTiO2/Ti . نشریه علمی علوم و فناوری رنگ. (1396) 11 ،90-79.
  11. A. R. Boccaccini, J. Cho, J. A. Roether, B. J. C. Thomas, E. Jane Minay, M.S.P. Shaffer, Electrophoretic deposition of carbon nanotubes. Carbon. 44 (2006)m 3149-3160.
  12. T. Talebi, B. Raissi, M. Haji, A. Maghsoudipour, The role of electrical conductivity of substrate on the YSZ film formed by EPD for solid oxide fuel cell applications. Int. J. Hydrog. Energy. 35 (2010)m 9405-9410.
  13. B. Aksakal, A. R. Boccaccini, Electrophoretic deposition of selenium. Mater. Lett. 76 (2012), 177-180.
  14. K. Yamaji, H. Kishimoto, Y. Xiong, T. Horita, N. Sakai, H. Yokokawa, Performance of anode-supported SOFCs fabricated with EPD techniques. Solid. State. Ion. 175 (2004), 165-169.
  15. K. Ui, S. Kawamura, N. Kumagai, Fabrication of binder-free SnO2 nanoparticle electrode for lithium secondary batteries by electrophoretic deposition method. Electrochim. Acta. 76 (2012), 383-388.
  16. S. M. Beck, H. Sabarez, V. Gaukel, K. Knoerzer, Enhancement of convective drying by application of airborne ultrasound – A response surface approach. Ultrason. Sonochem. 21 (2014), 2144-2150.
  17. W. Haddar, N. Baaka, N. Meksi, I. Elksibi, M. Farouk Mhenni, Optimization of an ecofriendly dyeing process using the wastewater of the olive oil industry as natural dyes for acrylic fibres. J. Clean. Prod. 66 (2014), 546-554.
  18. A. R. Amani-Ghadim, S. Aber, A. Olad, H. Ashassi-Sorkhabi, Optimization of electrocoagulation process for removal of an azo dye using response surface methodology and investigation on the occurrence of destructive side reactions. Chem. Eng. Process. 64 (2013), 68-78.
  19. A. R. Khataee, M. Zarei, L. Moradkhannejhad, Application of response surface methodology for optimization of azo dye removal by oxalate catalyzed photoelectro-Fenton process using carbon nanotube-PTFE cathode. Desalination. 258 (2010), 112-119.
  20. J. Basiri Parsa, Z. Merati, M. Abbasi, Modeling and optimizing of electrochemical oxidation of C.I. Reactive Orange 7 on the Ti/Sb–SnO2 as anode via response surface methodology. J. Ind.  Eng. Chem. 19 (2013), 1350-1355.
  21. C. A. Martínez-Huitle, E. Brillas, Decontamination of wastewaters containing synthetic organic dyes by electrochemical methods: A general review. Appl. Catal. B Environ. 87 (2009), 105-145.
  22. J. T. Kong, S. Y. Shi, X. P. Zhu, J. R. Ni, Effect of Sb dopant amount on the structure and electrocatalytic capability of Ti/Sb-SnO2 electrodes in the oxidation of 4-chlorophenol. J. Environ. Sci. 19 (2007), 1380-1386.
  23. M. Quiroz, S. Reyna, J. Sánchez, Anodic oxidation of pentachlorophenol at Ti/SnO2 electrodes. J. Solid. State. Electrochem. 7 (2003), 277-282.
  24. H. Xu, A. Li, X. Cheng, Electrochemical performance of doped SnO2 coating on ti base as electrooxidation anode, international. J. Electrochem. Sci. 6 (2011).
  25. C. C. Su, M. Pukdee-Asa, C. Ratanatamskul, M. C. Lu, Effect of operating parameters on decolorization and COD removal of three reactive dyes by Fenton's reagent using fluidized-bed reactor. Desalination. 278 (2011), 211-218.