نوع مقاله : مقاله پژوهشی
نویسندگان
دانشکده مهندسی نساجی و پلیمر، دانشگاه آزاد اسلامی، واحد یزد، یزد، ایران
چکیده
کلیدواژهها
موضوعات
عنوان مقاله [English]
نویسندگان [English]
In this research, we are proposing carbon-ceramic electrodes containing TiO2 nanoparticles and MWCNT for the degradation of Reactive Blue 222 dyes by sonoelectrochemistry. In addition, an electrochemical nanosensor based on glass carbon electrode modified with graphene oxide and gold nanourchins was introduced to online determination of dye. Due to the special characteristics of nanoaddetive, the proposed nanosensor has unique features such as high surface area, accelerated electron transfer and high stability. The results of determination the Reactive Blue 222 dye in a concentration range of 25-900 μM with a detection limit 8 μM depict a good performance of the sensor for determined dye. The degradation process were optimized various factors affecting including the amount of potential difference, the amount of TiO2 nanoparticles, MWCNT and the solution pH by the statistical response surface method. At optimal conditions, including pH 0.8, potential difference 0.90 V on carbon ceramic electrode containing 0.2 wt% TiO2 and 3.89 wt% multiwall carbon nanotube during 120 min applying sonoelectrochemical degradation, 96% of 1.0 mM Reactive Blue 222 was degradaed and 88% of initial TOC value (121.33 ppm) was reduced.
کلیدواژهها [English]
10.M. A. Radi, N. Nasirizadeh, M. Mirjalili, M. Rohani Moghadam, Ultrasound-assisted electrochemical decolorization of anthraquinone dye C.I Reactive Blue 49, its optimization and synergic effect: a comparative study. Int. J. Environ. Sci. Tech. (2018) 1-10.
11.S. Jafari, M. Dehghani, N. Nasirizadeh, H. R. Akrami, Voltammetric determination of Basic Red 13 during its sonoelectrocatalysis degradation. Microchim. Acta. 184 (2017), 4459–4468.
12. ع. رضایی طوسی، ن. نصیریزاده، م. ح. احرامپوش، بهینهسازی شرایط تخریب رنگ بازیک بلیو 47 بدون استفاده از عوامل اکسنده با استفاده از تکنیک فراصوت-الکتروشیمی و روش آماری CCD. مجله علمی پژوهشی طلوع بهداشت. (1396)16، 30-20.
13. ن. نصیریزاده، م. دهقانی، س. جعفری، تخریب رنگ بازیک قرمز 13 با فرآیند ترکیبی سونوالکتروشیمی در حضور نانوذرات TiO2. مجله علمی پژوهشی علوم و فناوری رنگ. (1395)10، 144-137.
14. ع. اعتمادیفر، م. دهقانی، س. جعفری، ن. نصیریزاده، بررسی عملکرد فرآیند سونوالکتروشیمی در تخریب رنگ بازیک زرد 28 در حضور نانوذرات دیاکسید تیتانیم. مجله علمی- پژوهشی شیمی کاربردی. (1396)42، 22-9.
15.J. R. Steter, Willyam, R. P. Barros, M. V. Lanza, A. J. Motheo, Electrochemical and sonoelectrochemical processes applied to amaranth dye degradation Chemosphere. Ultrason. Sonochem. 117 (2014) 200–207.
16.M. Siddique, R. Farooq, Z. Mehmood Khan, Z. Khan, S. F. Shaukat, Enhanced decomposition of reactive blue 19 dye in ultrasound assisted electrochemical reactor. Ultrason. Sonochem. 53 (2011) 190–196.
17.B. Yang, J. Zuo, X. Tang, F. Liu, X. Yu, X. Tang, H. Jiang, L. Gan, Effective ultrasound electrochemical degradation of methylene blue wastewater using a nanocoated electrode. Ultrason. Sonochem. 21 (2014) 1310–1317.
18.B. Thokchom, A. B. Pandit, P. Qiu, B. Park, J. Choi, J. Khim, A review on sonoelectrochemical technology as an upcoming alternative for pollutant degradation. Ultrason. Sonochem. 27 (2015) 210–234.
19.A. Yaqub, H. Ajab, Applications of sonoelectrochemistry in wastewater treatment system. Rev. Chem. Eng. 29 (2013), 123–130.
20.M. Rivera, M. Pazos, M. A. Sanroman, Improvement of dye electrochemical treatment by combination with ultrasound technique. J. Chem. Tech. Biotech. 84 (2009), 1118–1124.
21.S. Vajnhandl, A. Majcen, L. Marechal, Ultrasound in textile dyeing and the decolouration/mineralization of textile dye. Dyes Pigm. 15 (2005), 89-101.
22.H.C. C. Kumar, R. Shilpa., V. R. Rai, S. Ananda, Electrochemical degradation of acridine orange dye at pd/graphite modified electrode in aqueous solution. Int. J. Appl. Chem. 13(2017), 219-234.
23.Q. Qiao, S. Singh, S.L. Lo, Y. Li, J. Jin, L. Wang, Electrochemical oxidation of acid orange 7 dye with Ce, Nd, and co-modified PbO2 electrodes: Preparation, characterization, optimization, and mineralization. J. Taiwan Inst. Chem. Eng. 84 (2018), 110-122.
24.H. L. Poh, F. Sanek, A. Ambrosi, G. Zhao, Z. Sofer, M. Pumera, Graphenes prepared by Staudenmaier, Hofmann and Hummers methods with consequent thermal exfoliation exhibit very different electrochemical properties. Nanoscale 4 (2012), 3515–3522.
25.N. Nasirizadeh, M. Dehghani, M. E. Yazdanshenas, Preparation of hydrophobic and conductive cotton fabrics using multi-wall carbon nanotubes by the sol–gel method. J. Sol-Gel Sci. Technol. 73 (2015), 14-21.
26.S. Jafari, M. Dehghani, N. Nasirizadeh, M. Azimzadeh, An azithromycin electrochemical sensor based on an aniline MIP film electropolymerized on a gold nano urchins/graphene oxide modified glassy carbon electrode. J. Electroanal. Chem. 829 (2018) 27-34.
27.Z. Aghili, N. Nasirizadeh, A. Divsalar, S. Shoeibi, P. Yaghmaei, A highly sensitive miR-195 nanobiosensor for early detection of Parkinson's disease. Artif. Cell. Nanomed. B. 7 (2017), 1-9.
28.Z. Aghili, N. Nasirizadeh, A. Divsalar, S. Shoeibi, P. Yaghmaei, A nanobiosensor composed of exfoliated graphene oxide and gold nano-urchins, for detection of GMO products. Biosen. Bioelectron. 95 (2017), 72-80.
29.F. Aghaei, S. M. Seifati, N. Nasirizadeh, Development of a DNA biosensor for detection of phenylketonuria based on screen-printed gold electrode and hematoxylin. Anal. Method. 9 (2017), 966-973.
30.S. Hajihosseini, N. Nasirizadeh, M. S. Hejazi, P. Yaghmai, A sensitive DNA biosensor fabricated from gold nanoparticles and graphene oxide on a glassy carbon electrode. Mater.Sci. Eng. C, 61 (2016), 506–515.
31.A. Asadzadeh-Firouzabadi, H. R. Zare, N. Nasirizadeh, Electrochemical biosensor for detection of target dna sequence and single-base mismatch related to helicobacter pylori using chlorogenic acid as hybridization indicator. J. Electrochem. Soc. 163 (2016) B43-B48.
32.D. A. Skoog, D. M. West, Principles of instrumental analysis, saunders philadelphia, 1980, 500 – 534
33.Y. Liu, X. He, Y. Fu, D. D. Dionysiou, Degradation kinetics and mechanism of oxytetracycline by hydroxyl radical-based advanced oxidation processes. Chem. Eng. J. 284 (2016), 1317–1327.
34.C. A. Martinez-Huitle, M. A. Rodrigo MA, I. Sirés, O. Scialdone, Single and coupled electrochemical processes and reactors for the abatement of organic water pollutants: a critical review. Chem. Rev. 115 (2015), 13362–13407.
35.R. Salazar, M. S. Ureta-Zanartu, C. Gonzalez-Vargas, C. do Nascimento Brito, C. A. Martinez-Huitle, Electrochemical degradation of industrial textile dye disperse yellow 3: Role of electrocatalytic material and experimental conditions on the catalytic production of oxidants and oxidation pathway, Chemosphere, 198 (2018), 21-29.
36.S. Jafari, M. Dehghani, N. Nasirizadeh, Developing a highly sensitive electrochemical sensor using thiourea-imprinted polymers based on an MWCNT modified carbon ceramic electrode. J. Electroanal. Chem. 802 (2017), 139–146.
37.B. Habibi, M. Abazari, M. H. Pournaghi-Azar, Simultaneous determination of codeine and caffeine using single-walled carbon nanotubes modified carbon-ceramic electrode. Colloid. Surface. B. 114 (2014), 89-95.
38.N. Djafarzadeh, M. Safarpour, A. Khataee, Electrochemical degradation of three reactive dyes using carbon paper cathode modified with carbon nanotubes and their simultaneous determination by partial least square method. Korean J. Chem. Eng. 31(2014), 785-793.
D. Rajkumar, B. J. Song, J. G. Kim, Electrochemical degradation of Reactive Blue 19 in chloride medium for the treatment of textile dyeing wastewater with identification of intermediate compounds. Dyes Pigm. 72(2007), 1-7.