حذف ماده رنگزای مستقیم قرمز 31 از محلول‌های آبی با استفاده از نانوکامپوزیت‌های هیدروژلی سنتز شده

نوع مقاله : مقاله پژوهشی

نویسندگان

گروه شیمی دانشگاه پیام نور، تهران، ایران

چکیده

هدف از این تحقیق بررسی عملکرد نانوکامپوزیت‌های هیدروژلی به عنوان جاذب، جهت حذف ماده رنگزای مستقیم قرمز 31 از محلول‌های آبی می‌باشد. این نانوکامپوزیت‌ها از هیدروژل‌های پلی‌آکریل آمید (PAM) و پلی‌آکریلیک اسید (PAA) در حضور سدیم مونت موریلونیت به عنوان نانو پرکننده تهیه شدند. نانوکامپوزیت‌های به دست آمده توسط روش‌های دستگاهی FTIR، TGA، XRD و SEM مورد شناسایی قرار گرفتند. تاثیر عوامل مختلف از قبیل مقدار نانوکامپوزیت، pH محلول، زمان تماس و غلظت اولیه ماده رنگزا در فرآیند جذب مورد مطالعه قرار گرفت. نتایج نشان داد که بیشینه ظرفیت جذب ماده رنگزای مستقیم قرمز 31 در pH اسیدی، زمان تماس 90 دقیقه و مقدار وزنی 0.05 گرم از نانوکامپوزیت حاصل شد که مقدار آن در نانوکامپوزیت‌های PAM، PAA و کوپلیمر (PAM-co-PAA) به ترتیب 168.63، 108.22 و 128.9 میلی‌گرم بر گرم جاذب بود. داده‌های آزمایشگاهی با ایزوترم‌های جذبی لانگمویر و فروندلیچ تطبیق داده شدند و نتایج حاصل با مدل فروندلیچ مطابقت بهتری داشتند. مطالعات سینتیکی نشان داد که فرآیند جذب ماده رنگزا از مدل سینتیکی شبه درجه دوم تبعیت می‌کند.

کلیدواژه‌ها


عنوان مقاله [English]

Removal of Direct Red 31 Dye from Aqueous Solutions Using Synthesized Nanocomposites Hydrogel

نویسندگان [English]

  • Kh. Didehban
  • F. Kermajani
Department of chemistry, Payame Noor University, Tehran, Iran
چکیده [English]

The aim of this study was to investigate the performance of nanocomposites hydrogel as adsorbents for removal of Direct Red 31 dye from aqueous solutions. Here, these nanocompsites were prepared from polyacrylamide (PAM) and polyacrylic acid (PAA) hydrogels in the presence of sodium montmorillonite as nanofiller. The resulting nanocomposites were well characterized by FTIR, TGA, XRD and SEM analysis. The effect of various operation factors such as nanocomposite dosage, solution pH, contact time and initial dye concentration on the adsorption process was studied. The results showed that the maximum adsorption capacity (qmax) of Direct Red 31 was obtained in acidic pH, contact time 90 min and adsorbent dosage 0.05 g which was 168.63, 108.22 and 128.9 mg/g in PAM, PAA and (PAM-co-PAA) nanocomposites respectively. The experimental data were fitted into Langmuir and Freundlich adsorption isotherms and it was found that data fitted well with Freundlich model. Kinetic studies showed that dye adsorption process followed the pseudo-second-order kinetic model. 

کلیدواژه‌ها [English]

  • Removal of dye
  • Direct Red 31
  • Nanocomposite
  • Hydrogel
  • Montmorillonite
  1. B. H. Hameed, M. I. El-Khaiary, Batch removal of malachite green from aqueous solutions by adsorption on oil palm trunk fibre: equilibrium isotherms and kinetic studies. J. Hazard. Mater. 154 (2008), 237–244.
  2. Z. Aksu, Application of biosorption for the removal of organic pollutants: a review. Process Biochem. 40 (2005), 997–1026.
  3. S. F. Li, Removal of crystal violet from aqueous solution by sorption into semi interpenetrated networks hydrogels constituted of poly(acrylic acidacrylamide-methacrylate) and amylase. Bioresour. Technol. 101 (2010), 2197–2202.
  4. ا. نظرزاده زارع، م. منصورلکورج، م. معصومی، یک نانوکامپوزیت ابر جاذب دوست دار محیط زیست بر پایه (N – وینیل پیرولیدین-کو- مالئیک انیدرید) و کاربرد آن برای حذف ماده رنگزای قرمز کنگو از محلول‌های آبی. نشریه علمی- پژوهشی علوم و فناوری رنگ. (1396)11، 286- 275.
  5. م. ملکوتیان، خ. گل میرزایی، بررسی کارایی فرآیند اکسیداسیون پیشرفته به روش پراکسون به منظور حذف رنگزای راکتیو قرمز 198 از محیط‌های آبی. نشریه علمی- پژوهشی علوم و فناوری رنگ. (1394)9، 205- 199.
  6. ج. مهرعلی پور، ا. شعبانلو، م. سمرقندی، ح. ذوالقدر، بهینه‌سازی عوامل تاثیرگذار بر کارایی فرآیند انعقاد الکتروشیمیایی/ شناورسازی الکتروشیمیایی با الکترودهای ترکیبی (تیتانیم- آلومینیم) در رنگبری اسید سیاه 1 از محیط‌های آبی. نشریه علمی- پژوهشی علوم و فناوری رنگ، (1393) 8، 332- 325.
  7. G. Crini, Non-conventional low-cost adsorbents for dye removal: a review. Bioresour. Technol. 97 (2006), 1061–1085.
  8. K. Santhy, P. Selvapathy, Removal of reactive dyes from wastewater by adsorption on coir pith activated carbon. Bioresour. Technol. 97 (2006). 1329–1336.
  9. R. M. Ali, H. A. Hamad, M. M. Hussein, G. F. Malash, Potential of using green adsorbent  of heavy metal removal from aqueous solutions: adsorption kinetics, isotherm, thermodynamic mechanism and economic analysis. Ecol. Eng.  91 (2016), 317–332.
  10. A. T. Paulino, M. R. Guilherme, A. V. Reis, G. M. Campese, E. C. Muniz, J. Nozaki, Removal of methylene blue dye from an aqueous media using superabsorbent hydrogel supported on modified polysaccharide. J. Colloid Interface Sci. 301(2006), 55–62.
  11. A. V. Vivek, R. Dhamodharan, Amphiphilic polystyrene-graft-poly(N,N-dimethylamino-2-ethyl methacrylate) hydrogels synthesized via room temperature ATRP: studies on swelling behaviour and dye sorption. React. Funct. Polym. 68 (2008), 967–973.
  12. A. Duran, M. Soylak, S.A. Tuncel, Poly(vinyl pyridine-polyethylene glycol methacrylate-ethylene  glycol dimethacrylate) beads for heavy metal removal. J. Hazard. Mater. 155 (2008), 114–120.
  13. R. Srinivasan, Advances in application of natural clay and its composites in Removal of biological, organic, and inorganic contaminants from drinking water. Adv. Mater. Sci. Eng. (2011) 872531.
  14. آ. الماسیان، م. علیا، م. پروین زاده گشتی، غ. چیذری فرد، رنگبری رنگزای کاتیونی بازیک قرمز 46 از محلول‌های آبی با استفاده از کامپوزیت سوپر جاذب زئولیت/ اسید اکریلیک: بررسی ایزوترم و سینتیک جذب. نشریه علمی- پژوهشی علوم و فناوری رنگ. (1392) 7، 203- 195.
  15. G. H. Jing, L. Wang, H. J. Yu, W.A. Amer, L. Zhang, Recent progress on study of  hybrid hydrogels for water treatmen. Colloid Surf. A-Physicochem. Eng. Aspects. 416 (2013), 86–94.
  16. V. Janaki, K. Vijayaraghavan, B. T. Oh, K. J. Lee, K. Muthuchelian, A. K. Ramasamy, S. Kamala-Kannan, Starch/polyaniline nanocomposite for enhanced removal of reactive dyes from synthetic effluent. Carbohydr. Polym. 90 (2012), 1437– 1444.
  17. S. Ghorai, A. K. Sarkar, A. B. Panda, S. Pal, Effective removal of Congo red dye from aqueous solution using modified xanthan gum/silica hybrid nanocomposite as adsorbent. Bioresour. Technol. 144 (2013), 485–491.
  18. N. A. Churochkina, S. G. Starodoubtsev, A. R. Khokhlov, Swelling and collapse of the gel composites based on neutral and slightly charged poly(acrylamide) gels containing Namontmorillonite. Polym. Gels Networks. 6 (1998), 205–215.
  19. K. Kabiri, Zohuriaan-Mehr, Superabsorbent hydrogel composites. Polym. Adv. Technol. 14 (2003), 438–444.
  20. J. Lin, J. Wu, Z. Yang, M. Pu, Synthesis and properties of poly(acrylic acid)/mica superabsorbent nanocomposite. Macromol. Rapid Commun. 22 (2001), 422– 424.
  21. S. G. Starodoubtsev, N. A. Churochkina, A. R. Khokhlov, Hydrogel composites of neutral and slightly charged poly(acrylamide) gels with incorporated bentonite interaction with salt and ionic surfactants. Langmuir. 16 (2000), 1529–1534.
  22. Y. Xiang, Z. Peng, D. Chen, A new polymer/clay nano-composite hydrogel with improved response rate and tensile mechanical properties. Eur. Polym. J. 42 (2006), 2125–2132.
  23. Y. Safa, H. N. Bhatti, Kinetic and thermodynamic modeling for the removal of Direct Red 31 and Direct Orange 26 dyes from aqueous solutions by rice husk. Desalination. 272 (2011), 313–322.
  24. N. M. Mahmoodi, J. Abdi, D. Bastani, Direct dyes removal using modified magnetic ferrite nanoparticle. J Environ Health Sci Eng 12 (2014) 96.
  25. F. Ahmadkhani khari, M. Khatibzadeh, N. M. Mahmoodi, Removal of anionic dyes from aqueous solution by modified alginate. Desalin. Water. Treat. 51(2013), 2253-2260.
  26. N. M. Mahmoodi, R. Salehi, M. Arami, Binary system dye removal from colored textile wastewater using activated carbon: Kinetic and isotherm studies. Desalination. 272 (2011), 187–195.

M. Zanetti,  G. Camino, R. Thoman, R. Mulhaupt, Synthesis and thermal behavior of layered silica-EVA nanocomposires. Polymer. 42 (2001), 4501–4507