بررسی اثر روش‌های مختلف پیش‌پردازش داده‌های طیفی محلول‌های قندی در ناحیه زیرقرمز نزدیک بر مدل تخمین غلظت ساکارز

نوع مقاله : مقاله پژوهشی

نویسندگان

1 مهندسی علوم و صنایع غذایی، دانشگاه آزاد اسلامی، واحد علوم و تحقیقات تهران، تهران، ایران

2 گروه علوم و صنایع غذایی، دانشگاه آزاد اسلامی، واحد علوم و تحقیقات تهران، تهران، ایران

3 گروه پژوهشی نمایش رنگ و پردازش تصاویر رنگی، پژوهشگاه رنگ، تهران، ایران

4 موسسه تحقیقات فنی و مهندسی کشاورزی، سازمان تحقیقات، آموزش و ترویج کشاورزی، کرج، ایران

چکیده

در سال‌های اخیر استفاده از روش‌های طیف‌سنجی زیرقرمز نزدیک برای ایجاد یک مدل تخمین خصوصیات فیزیکی و شیمیایی ترکیبات در صنایع غذایی گسترش یافته است. در این تحقیق نسبت به بررسی تاثیر برخی از روش‌های پیش‌پردازش داده‌های طیفی همچون میانگین‌گیری متحرک، تصحیح پراکنش افزاینده، هموارسازی ساویتزکی-گولای، توزیع نرمال استاندارد، مشتق اول و مشتق دوم بر مدل تخمین میزان ساکارز موجود در شربت‌های کارخانه تولید شکر اقدام شد. نتایج نشان داد که روش‌های پیش‌پردازش توزیع نرمال استاندارد و مشتق‌گیری دوم می‌توانند بهبود موثری در تخمین توسط مدل تدوین شده داشته باشند.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Investigating the Effect of Various Pre-Processing Methods of the Spectral Data of Sugar Syrups on the Model Estimation of Sucrose Concentration in Near Infrared Region

نویسندگان [English]

  • M.E. Bahrami 1
  • M. Honarvar 2
  • K. Ansari 3
  • B. Jamshidi 4
1 Department of Food Science and Technology, Islamic Azad University, Science and Research Branch of Tehran,Tehran, Iran
2 Department of Food Science and Technology, Islamic Azad University, Science and Research Branch of Tehran, Tehran, Iran
3 Department of Color Imaging and Color Image Processing, Institute for Color Science and Technology, Tehran, Iran
4 Agricultural Engineering Research Institute, Agricultural Research Education and Extension Organization (AREEO), Karaj, Iran
چکیده [English]

Using Near-infrared spectroscopy methods to create the physical and chemical properties estimation model of material has been developed and considered by the food industries in recent years. The present study was conducted to investigate the statistical effects of various pre-processing techniques such as Moving Average (MA), Multiplicative Scatter Correction(MSC), Savitzky-Golay(SG), Standard Normal Variate(SNV), First and Second derivative on the Near-Infrared spectral data of the sugar syrups on sucrose concentration estimation model.  The results showed that the SNV and the Second derivative techniques could have an effective improvement in the estimation model. 

کلیدواژه‌ها [English]

  • Spectral pre-processing
  • Near infrared spectroscopy
  • Sucrose
  • Sugar syrups
  1. C. Pasquini, Near infrared spectroscopy: fundamentals, practical aspects and analytical applications. J. Braz. Chem. Soc. 14(2003), 198-219.
  2. M. Golic, K.Walsh, P. Lawson, Short-wavelength near-infrared spectra of sucrose, glucose, and fructose with respect to sugar concentration and temperature. Appl. Spectrosc. 57(2003), 139-45.
  3. M. Manley, Near-infrared spectroscopy and hyperspectral imaging: non-destructive analysis of biological materials. Chem. Soc. Rev. 14(2014), 14-43.
  4. L. U. Porep , D. R. Kammerer, R. Carle, On-line application of near infrared (NIR) spectroscopy in food production. Trends Food Sci. Technol. 46(2015), 211-230.
  5. H. Wang, J. Peng, C. Xie, Y. Bao, Y. He, Fruit quality evaluation using spectroscopy technology: a review. Sensors. 15(2015), 11889-11927.
  6. Y. Ozaki, W. F. McClure, A. A.Christy, Near-infrared spectroscopy in food science and technology: John Wiley & Sons; (2006).
  7. L. Xu, Y. P.Zhou, L. J. Tang, H. L. Wu, J. H. Jiang, G. L. Shen, R. Q. Yu. Ensemble preprocessing of near-infrared (NIR) spectra for multivariate calibration. Anal Chim Acta. 616(2008), 138-143.
  8. B. Jamshidi, E. Mohajerani, J. Jamshidi, S. Minaei, A. Sharifi. Non-destructive detection of pesticide residues in cucumber using visible/near-infrared spectroscopy. Food Addit. Contam. Part A. 32(2015), 857-863.
  9. B. Jamshidi, S. Minaei, E. Mohajerani, H. Ghassemian, Prediction of soluble solids in oranges using visible/near-infrared spectroscopy: Effect of peel. Int. J. Food  Prop. 17( 2014), 1460-1468.
  10. ز.حقیقی، ا. ح. کریمی، غ. وطن‌خواه، شناسایی بست دیوارنگاره‌های تاریخی خانه سوکیاس اصفهان با استفاده از طیف بینی زیرقرمز تبدیل فوریه و کمومتریکس. مجله علمی پژوهشی علوم و فناوری رنگ. (1394) 9، 82-۷۵.
  11. R. Henn, A. Schwab, C. W. Huck, Evaluation of benchtop versus portable near-infrared spectroscopic method combined with multivariate approaches for the fast and simultaneous quantitative analysis of main sugars in syrup formulations. Food Control. 68(2016), 97-104.
  12. S. Heppner, K. Thielecke, K. Buchholz, D. Wullbrandt, Potential applications of NIR spectrometry in the sugar industry. Zuckerindustrie. 125(2000), 325-330.
  13. R. Lu, Predicting firmness and sugar content of sweet cherries using near–infrared diffuse reflectance spectroscopy. Trans. ASAE. 44(2001), 1265.
  14. R. Mehrotra, H. W. Siesler, Application of mid infrared/near infrared spectroscopy in sugar industry. Appl. Spectrosc. Rev. 38(2003), 307-354.
  15. S. Minaei, H. Bagherpour, M. Abdollahian Noghabi, M. Khorasani Fardvani, F. A. Forughimanesh Comparative study concerning linear and nonlinear models to determine sugar content in sugar beet by near infrared spectroscopy (NIR). J. Food Biosci. Technol. 6(2016), 13-22.
  16. Y. Roggo, L. Duponchel, B. Noe, J. Huvenne, Sucrose content determination of sugar beets by near infrared reflectance spectroscopy. Comparison of calibration methods and calibration transfer. J. Near Infrared Spectrosc.10 (2002), 137-150.
  17. Y. Roggo, L. Duponchel, J. P. Huvenne. Quality evaluation of sugar beet (Beta vulgaris) by near-infrared spectroscopy. J. Agric. Food Chem. 52(2004), 1055-1061.
  18. Y. Roggo, P. Chalus, L. Maurer, C. Lema-Martinez, A. Edmond, N. Jent. A review of near infrared spectroscopy and chemometrics in pharmaceutical technologies. J. Pharm. Biomed. Anal. 44(2007), 683-700.
  19. A. Moghimi, M. H. Aghkhani, A. Sazgarnia, M. Sarmad. Vis/NIR spectroscopy and chemometrics for the prediction of soluble solids content and acidity (pH) of kiwifruit. Biosyst. Eng. 106(2010), 295-302.
  20. Wojtczak M. ICUMSA-International commission for uniform methods of sugar analysis. Gazeta Cukrownicza. 6(2003), 191-192.
  21. A. Rinnan, F. Van den Berg, S. B. Engelsen, Review of the most common pre-processing techniques for near-infrared spectra. TrAC Trends Anal. Chem. 28(2009), 1201-1222
  22.  ب. جمشیدی، س. مینایی، ع. مهاجرانی،, ح. قاسمیان. بررسی اثر پیش‌پردازش‌های مختلف طیفی بر ارزیابی غیر مخرب کیفیت پرتقال با‏ اسپکتروفوتومتری فروسرخ نزدیک ‎(NIRS)‎.. مجله تحقیقات مهندسی کشاورزی. (2014)15.
  23. B. M. Nicolai, K. Beullens, E. Bobelyn, A. Peirs, W. Saeys, K. I. Theron, J. Lammertyn. Nondestructive measurement of fruit and vegetable quality by means of NIR spectroscopy: A review. Postharvest Biology. Technol. 46(2007), 99-118.