بررسی عوامل موثر در دست‌یابی به رنگ‌های پیزوالکتریک

نوع مقاله : مقاله پژوهشی

نویسندگان

1 گروه رنگدانه‌های سرامیکی و لعاب، پژوهشگاه رنگ، تهران، ایران

2 گروه شیمی، دانشکده علوم پایه دانشگاه جامع امام حسین (ع)

3 پژوهشکده سرامیک، پژوهشگاه مواد و انرژی

چکیده

در این تحقیق خواص پیزوالکتریک رنگ‌های با درصد جامد بالا بدست آمده از اختلاط رنگدانه پیزوالکتریک (بالای 85% وزنی) مورد بررسی قرار گرفت. رنگدانه پیزوالکتریک با قطبش بالای مورد استفاده در این تحقیق از قطعات بازیافتی دستگاه­های سونار تهیه شد که پس از خردایش، الک و اصلاح سطح با استفاده از ترکیبات سیلانی مورد استفاده قرار گرفت. نتایج بررسی ساختاری نشان داد که الگوی پراش پرتو X خالص تیتانات زیرکونات سرب PbZr1-xTixO3(PZT) در رنگ وجود دارد. ریزساختار، حضور ذرات زیر µm 50 را نشان می­دهد که نسبتا توده هستندکه حالت توده­ای برای ایجاد ریسمانی از ذرات پیزو برای ایجاد خاصیت پیزوالکتریک در زمینه رنگ، مطلوب می­باشد. با توجه به مساله افت ضریب پیزوالکتریک (عدد d33) با کاهش اندازه ذرات، میانگین اندازه ذرات در محدوده بیش از μm 38 (الک مش 400) و کمتر از μm 106 (الک مش 140) قرار گرفت. به همین دلیل، محدوده بهینه ضخامت فیلم در محدوده μm 1500-500 انتخاب شد. همچنین مشخص شد، نوع آماده‌سازی سطح فلز و استفاده از حلال تاثیر بسزایی در بهبود خواص پیزوالکتریک رنگ داشته است. نمونه رنگ قلیاشویی شده به عنوان رنگ بهینه ضریب پیزوالکتریک pC/N 22 را نشان داد. همچنین این رنگ، مقاومت به خوردگی مطلوب­تری پس از 200 ساعت آزمون مه نمکی را داشت.

کلیدواژه‌ها


عنوان مقاله [English]

An investigation on the Effect of Different Parameters on Preparation of Piezoelectric Paints

نویسندگان [English]

  • A. Aarabi 1
  • S. M. Atifeh 2
  • R. Tbarzadi 3
  • F. Lalavi 2
1 Department of Inorganic Pigments and Glazes, Institute for Color Science and Technology
2 Chemistry department, Emam hossein university of Iran
3 ceramic department, Materials and energy research center, Iran
چکیده [English]

In this study, piezoelectric properties of high solid piezoelectric paints (upper than 85 wt% pigment) have been investigated. High polarity particles were obtained by recyclying cores of sonar devices through cruching, milling, seizing anod surface modifying by silane groups. Structural studies revealed the presence of lead zirconate titanate (PZT) in the X-ray diffraction pattern (XRD) of paint. Microstructue confirmed the existence of PZT particles in the polymeric matrix of resin which were agglomerated to optimize piezoelectric values. Due to the loss of piezoelectric properties in submicron sizes, average of particle size was selected between 38 μm (400 mesh) and 106 μm (140 mesh). The optimized thickness was also set between 500-1500 μm for the same reason. Moreover, other studies showed that surface treatments and use of solvent in formulation had undeniable effects on piezoelectric properties of paints. The optimized Piezoelectric Coefficient d33 (22 pC/N) was achieved in the sample treated by alkaline solution. This sample also showed higher corrosion resistivity in 200 hours period of time. 

کلیدواژه‌ها [English]

  • Piezoelectric paints
  • Piezoelectric Coefficient d33
  • Lead zirconate titanate
  • Electroceramic
  1. M. Mashayekhi, K. Ghani, R. Shoja Razavi, A. Shokrolahi, N. Kiomarsipour, Development of spacecraft black thermal control coatings using the synthesized mesoporous Co3O4 pigment. Prog. Color. Colorants. Coat. 8 (2015), 169-176.
  2.                     ن. کیومرثی­پور، ر. شجاع رضوی، ک. قانی، ارزیابی تأثیر نسبت رنگدانه به رزین بر خواص نوری- حرارتی و عمومی پوشش‌های کنترل گرمایی سفید سیلیکاتی به کار رفته در ماهواره، نشریه علمی پژوهشی علوم و فناوری رنگ. (1392)7 ،117ـ 113.
  3. P. Ctibor, J. Sedlacek, M. Janata, Dielectric strontium zirconate sprayed by a plasma torch. Prog. Color. Colorants. Coat. 10 (2017), 225-230.
  4. Antonio Arnau Vives, Piezoelectric transducers and applications. Springer. 2004, 2-5.
  5. R. Asthana, A. Kumar, N. Dahotre, Materials processing and manufacturing science. butterworth-heinemann, 2006, 236-240. 
  6. A. Safari, E. Koray Akdogan, Piezoelectric, Acoustic materials for transducer applications. Springer. 2008, 42-52.
  7. I. Payo, J. M. Hale, A piezoelectric paint thick-film sensor for vibration monitoring purposes. in Proceedings of ISMA 2010 : 24th International Conference on Noise and Vibration Engineering including USD2010, Leuven, Belgium, (2010), 1045-1053.
  8. S. Egusa, N. Iwasawa, Application of piezoelectric paints to damage detection in structural materials. J. Reinf. Plast. Compos, 15(1996), 806–817.
  9. M. Lukacs, M. Sayer, D. Knapik, R. Candela, F. S. Foster, Novel PZT films for ultrasound biomicroscopy, in Proceedings of IEEE Ultrasonics Symposium, Missouri-Kansas, USA, 2 (1996) 901–904.
  10. T. Zawada, K. Hansen, K. Astafiev, E. Ringgaard, Flexible piezoelectric material, production and use thereof, EP pat. 2 608 287 A1, 2011.
  11. D. M. Yebra, S. Kiil, K. Dam-Johansen, Antifouling technology—past, present and future steps towards efficientand environmentally friendly antifouling coatings. Prog. Org. Coat. 50 (2004), 75–104.
  12. B. J. Wooden Dickerson, S. Edleman, S. Sprineg, piezoelectric polymer antifouling coating, US pat. 4283461, 1981.
  13. L. H Kang, J. R. Lee, Piezoelectric paint sensor for impact and vibration monitoring, in proceedings of 7th European Workshop on Structural Health Monitoring, 2014.
  14. S. Egusa, N. Iwasawa, Piezoelectric paints as one approach to smart structural materials with health-monitoring capabilities. Smart. Mater. Struct. 7 (1998), 438–445.
  15. J. M. Hale, J. Tuck, a novel thick-film strain transducer using piezoelectric paint, proceedings of the Institution of Mechanical Engineers, Part C. J. Mech. Eng. Sci. 213(1999), 613-622.
  16. C. J. Hu, Y. H. Lin, C. W. Tang, M. Y. Tsai, W. K. Hsu, H. F. Kuo, ZnO-Coated carbon nanotubes: Flexible piezoelectric generators, Adv. Mater. 23( 2011), 2941–2945.
  17. Y. C. Li, S. C. Tjong, R. K. Y. Li, Dielectric properties of binary polyvinylidene fluoride/barium titanate nanocomposites and theirnanographite doped hybrid. Express Polym. Lett. 5(2011), 526–534.
  18. T. Tuyet Mai, P. Ngoc, C. C. Van, B. Luua, H. Nguyen, X. Duc, T. Pham, b. Martinc, P. Carrièrec, Enhancement of polarization property of silane-modified BaTiO3 nanoparticles and its effect in increasing dielectric property of epoxy/BaTiO3 nanocomposites. J. Sci. Adv. Mater. Dev. 1 (2016), 90-97.
  19. N. Saber, J. Ma, H. Y. Hsu, S. H. Lee, D. Marney, Effect of surface modification of lead zirconate titanate particles on the properties of piezoelectric composite sensors,  in proceedings of Fourth International Conference on Smart Materials and Nanotechnology in Engineering, 2013.
  20.  F. K. Chang, Structural Health Monitoring 2003: From Diagnostics & Prognostics to structural health management, Destech, California. 2003, 1667-1672.
  21. N. Levi, R. Czerw, S. Xing, P. Iyer, D. L. Carroll, Properties of PolyvinylideneDifluoride-Carbon Nanotube Blends. Nano. Lett. 4 (2014), 1267-1271.
  22. J. R. WHITE, Piezoelectric paint: Ceramic-polymer composites for vibration sensors. Mater. Sci. 39(2004), 105 – 3114.
  23. C. Yang, C-P Fritzen, Piezoelectric paint: characterization for further applications, Smart Mater. Struct. 21(2012), 045017.
  24. T. T. Nguyen, T. T. M. Phan, N. C. Chu, V. B. Lu, X. H. Nguyen, I. Martin, P. Carriere, Elaboration and dielectric property of modified PZT/Epoxy nanocomposites. Polym. Composites. 2014, 1-7.
  25. R. Li, L. Zhang, Z. Shi and J. Pei, Effects of coupling agents on the structure and electrical properties of PZT-poly(vinylidene fluoride) composites. Appl. Sci. 6(2016), 282.
  26. K. A. Hanner, A. Safari, R. E. Newnham, J. Runt. THIN film 0-3 polymer/piezoelectric ceramic composites : piezoelectric paints. Ferroelectr. 100(1989), 255-260.