ساختار مولکولی و الکترونی و طیف الکترونی ترکیب 4-((4- برموفنیل) دی‌آزنیل)-2-اتوکسی آنیلین و کمپلکس آن با فلز روی (II)

نوع مقاله : مقاله پژوهشی

نویسنده

دانشکده شیمی، دانشگاه خوارزمی، تهران، ایران

چکیده

ساختارهای مولکولی و الکترونیکی لیگاند 4-((4-برموفنیل)دی آزنیل)-2-اتوکسی آنیلین  (L1) با استفاده از تئوری تابع چگال (DFT) مورد مطالعه قرار گرفت و داده‌های محاسبه شده با مقادیر تجربی حاصل از پراش پرتو ایکس مقایسه شد. مطالعات نظری نشان داد که توافق بسیار خوبی بین مقادیر تجربی و مقادیر محاسبه شده برای طول و زوایای پیوندی وجود دارد. همچنین، ساختار چهاروجهی انحراف یافته برای کمپکلس روی(II) پیشنهاد شد که فاصله‌های پیوندی بین لیگاند و فلزمرکزی در این ترکیب در محدوده فواصل پیوندی Zn―O و Zn―N برای کمپلکس‌های چهار کوئوردینه Zn(II) می‌باشند. برای لیگاند آزاد، HOMO محاسبه شده اوربیتال‌های π کل سیستم می‌باشد وLUMO  اربیتالπ*  لیگاند است. شکاف انرژی LUMO-HOMO برای این ترکیب، معادل ~ 3.25 eV محاسبه می‌شود. در حالی که در کمپلکس بهینه شده [Zn(L1)2]، HOMO به صورت π (برموفنیل دی آزو فنیل) فقط بر روی یک لیگاند مستقر شده است وLUMO  به صورت σ*(Ligand―4s Zn) محاسبه می‌شود. علاوه بر این، محاسبات تابع چگال وابسته به زمان (TDDFT) برای پیش‌بینی طیف جذبی  UV-Visترکیب لیگاند L1 و نیز کمپلکس مربوطه [Zn(L1)2]+2 در حالت گازی انجام شد و بر همین اساس، انتقالات الکترونیکی و اربیتال‌های مولکولی درگیر به طور کامل ارائه گردید. در نهایت، طیف‌های الکترونیکی L1 و [Zn(L1)2] با روش TDDFT پیش‌بینی شده ونتایج نشان داد که انتقالات الکترونی لیگاند عمدتا از نوع انتقالات π→π* و nb(N=N)→σ*(C―H)ethyl+σ*(N―H) می‌باشند. نوار جذبی قوی که در ناحیه 426 و 415 نانومتر طیف جذبی الکترونی کمپلکس مشاهده می‌شود مربوط به انتقال π→π* بوده و در آن الکترون از سیستم π یک لیگاند به π* لیگاند دوم منتقل می‌شود لذا فام پیش‌بینی شده برای کمپلکس [Zn(L1)2]2+ به صورت زرد-نارنجی می‌باشد.

کلیدواژه‌ها


عنوان مقاله [English]

Molecular and Electronic Structure and Electronic Spectra of 4-[(4-Bromophenyl) Diazenyl]-2-Ethoxyaniline Ligand and its Zn(II) Complex

نویسنده [English]

  • J. Attar Gharamaleki
Faculty of Chemistry, Kharazmi University
چکیده [English]

The molecular and electronic structure of 4-[(4-bromophenyl)diazenyl]-2-ethoxyaniline, (L1), as ligand was calculated by Density Functional Theory (DFT). The bond distances as well as bond and torsion angles in the optimized molecular structure was compared with the already reported X-ray structure determined values. Also, tetrahedral geometry for the Zn(II) complex was proposed with Zn―O and Zn―N bond distances are in accord with those reported for similar N2O2 coordinating complexes. For the optimized free ligand, HOMO is calculated to be π orbital and LUMO is π* orbital and the energy gap of LUMO-HOMO is ~3.25 eV. Whereas, for the optimized [Zn(L1)2]+2 complex, HOMO is predicted to be π(bromophenyldiazophenyl) fragment delocalized on one ligand and LUMO is σ*(Ligand―4s Zn). Moreover, time-dependent density functional theory (TDDFT) calculations were applied to preciously predicting and assigning of the UV-Vis absorption spectra of L1 and [Zn(L1)2] in gas phase. The results showed that the electronic spectra of free ligand is mainly due to π→π* and nb(N=N)→σ*(C―H)ethyl+σ*(N―H) electronic transitions. Strong absorption bands predicted at 426 and 415 nm for [Zn(L1)2]+2 due to π→π* electronic transitions from one ligand to the other one. Accordingly, the color of the [Zn(L1)2]2+ complex was predicted to be yellowish-orange. 

کلیدواژه‌ها [English]

  • Diazo ligand
  • Zn(II) complex
  • Molecular and electronic structure
  • Electronic transitions
  • DFT/TDDFT
1. B. Liu, Q. Xu, catena-Poly[[diaquazinc(II)]-l-trans-4,4''-diazenediyldibenzoato-k4O,O':O'',O''']. Acta Cryst. E65 (2009), m509.
2. J. W. Bai, J. Wang, Y. Hou, B. Z. Zhao, Q. Fu, 4,4'-Diazenediyldiphthlato-k2O2:O'2-bis[pentaaqamanganese(II)] tetrahydrate. Acta Cryst. E64 (2008), m3–m4.
3. S. Gisvold, Text book of organic medicinal and pharmaceutical chemistry, 11th Ed., Lippincott, USA, (2004), 269.
4. N. Anand, Sulfonamides and sulfones, Burger's, Medicinal Chemistry, Vol.2, 5th Ed. Wiley, NY, (1996), Chap. 33.
5. K. M. Rathod, N. S. Thakre, Synthesis and antimicrobial activity of azo compounds containing m-cresol moiety. Chem. Sci. Trans. 2(2013), 25-28.
6. D. M. Marmion, Handbook of colorant, Wiley New York. (1999), 23-26.
7. R. J. Chudgar, J. Oakes, Dyes AZO. Kirk-Othmer Encycl. Chem. Tech. 116 (2003), 1199-1208.
8. C. M. Carliell, S. J. Barclay, C. A. Buckley, Microbial decolourization of a reactive azo dye under anaerobic conditions. Water SA. 21(1995), 61–69.
9. A. Stolz, Basic and applied aspects in the microbial degradation of azo dyes. Appl. Microbiol. Biotech. 56 (2001), 69-80.
10. A. Pandey, P. Singh, L. Iyengar, Bacterial decolorization and degradation of azo dyes. Int. Biodeter. Biodegrad. 59 (2007), 73–84.
11. S. Chetioui, I. Boudraa, S. Bouacida, A. Bouchoul S. E. Bouaoud, 1-[(E)-2-(2-Hydroxy-5-methylphenyl)-diazen-2-ium-1-yl]naphthalen-2-olate. Acta Cryst. E69 (2013), o1322–o1323
12. S. H. Lee, J. Y. Kim, J. Ko, J. Y. Lee, J. S. Kim, J. Org. Chem. Regioselective complexation of metal ion in chromogenic calix[4]biscrowns. 69 (2004), 2902–2905.
13. H. Bougueria, M. A. Benaouida, S. Bouacida, A. k. Bouchoul, (E)-1-[2-(2-Cyanophenyl)diazen-2-ium-1-yl] naphthalen -2-olate. Acta Cryst. E69 (2013), o1175–o1176
14. M. Wang, K. Funabiki, and M. Matsui, Dyes Pigm. 57 (2003), 77–86.
15. L. A. Al-Rubaie, R. J. Mhessn, Synthesis and characterization of azo dye para red and new derivatives. E-J. Chem. 9(2012), 465-70.

16. ع. مرادی،سنتز تعدادی از مواد رنگزای آزوی جدید مشتق شده از 6، 8- دی کلرو- 4- هیدروکسی کینولین -2 (H1)- اُن: تعیین ساختار، حلال‌پوشی و خواص طیف‌سنجی. نشریه علمی -پژوهشی علوم و فناوری رنگ. (1396)11، 213-203.
17. م. حسین نژاد، ع. خسروی، ک. قرنجیگ، س. مرادیان،سنتز، کاربرد و بررسی خواص دو ماده رنگزای اسیدی جدید بر پایه نفتالیمید. نشریه علمی -پژوهشی علوم و فناوری رنگ. (1389)4، 243-233.
18. M. R. Melardi, J. Attar Gharamaleki, S. Rezabeyk , M. K. Rofouei, 4-[(4-Bromophenyl)diazenyl] -2-ethoxyaniline. Acta Cryst., E67 (2011), o3396.
19. M. K. Rofouei, Z. Ghalami, J.Attar Gharamaleki, G. Bruno H. Amiri Rudbari, Acta Cryst. 4-[(4-Bromo­phen­yl)diazen­yl]-2-eth­oxy­aniline E67 (2011), o1852
20. B. G. Chand, U. S. Ray, J. Cheng, T.-H. Lu, C. Sinha, Studies on the zinc(II)-azoimine system. Single-crystal X-ray structure of Zn(MeaaiMe)Cl2•H2O and Zn(HaaiMe)2(NCS)2 (MeaaiMe=1-methyl-2-(p-tolylazo)imidazole, HaaiMe=1-methyl-2-(phenylazo) imidazole). Polyhedron, 22(2003), 1213–1219.
21. D. Das, B. G. Chand, K. K. Sarker, J. Dinda, C. Sinha, Zn(II)-azide complexes of diimine and azoimine functions: Synthesis, spectra and X-ray structures. Polyhedron. 25 (2006), 2333–2340.
22. Z.-F. Chen, Z.-L. Zhang, Y.-H. Tan, Y.-Z. Tang, H.-K. Fun, , Z.-Y. Zhou, B. F. Abrahams, H. Liang, Coordination polymers constructed by linking metal ions with azodibenzoate anions. Cryst. Eng. Comm. 10 (2008), 217–231.
23. Gaussian 09, Revision A.02, M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R .E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, O. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski, D. J. Fox, Gaussian, Inc., Wallingford CT, 2009.
24. H. P. H. A. Frisch, R. D. Dennington II, T. A. Keith, J. Millam, B. Nielsen, A. J. Holder, J. Hiscocks, GaussView Version 5.0.8, Gaussian, Inc., Wallingford, CT, USA, 2009.
25. A. D. Becke, Density‐functional thermochemistry. III. The role of exact exchange. J. Chem. Phys. 98 (1993), 5648-5652.
26. C. Lee, W. Yang, R. G. Parr, Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. Phys. Rev. B: Condens. Matter Mater. Phys. 37 (1988), 785-789.
27. T. H. Dunning Jr., P. J. Hay, Modern Theoretical Chemistry, Plenum, New York, (1976), 1–28.
28. P. J. Hay, W. R. Wadt, Ab initio effective core potentials for molecular calculations. Potentials for the transition metal atoms Sc to Hg. J. Chem. Phys. 82 (1985) 270-283.
29. W. R. Wadt, P. J. Hay, Ab initio effective core potentials for molecular calculations. Potentials for main group elements Na to Bi. J. Chem. Phys. 82 (1985) 284-298.
30. P. J. Hay, W. R. Wadt, Ab initio effective core potentials for molecular calculations. Potentials for K to Au including the outermost core orbitals. J. Chem. Phys. 82 (1985) 299-310
31. R. Bauernschmitt, R. Ahlrichs, Treatment of electronic excitations within the adiabatic approximation of time dependent density functional theory. Chem. Phys. Lett. 256 (1996) 454-464
32. R. E. Stratmann, G. E. Scuseria, M. J. Frisch, An efficient implementation of time-dependent density-functional theory for the calculation of excitation energies of large molecules. J. Chem. Phys. 109 (1998) 8218-8224
33. M. E. Casida, C. Jamorski, K. C. Casida, D. R. Salahub, Molecular excitation energies to high-lying bound states from time-dependent density-functional response theory: Characterization and correction  of  the time-dependent local density approximation ionization threshold. J. Chem. Phys. 108 (1998), 4439-4449.
34. Mercury 3.3, Copyright Cambridge Crystallographic Data Centre.
35. K. A. Kounavi, M. J.Manos, A. J. Tasiopoulos, S. P. Perlepes, V. Nastopoulos, Zinc(II) and nickel(II) benzoate complexes fromthe Use of 1-methyl-4,5-diphenylimidazole, Bioinorg. Chem. App. (2010), 1-7.