بررسی اثر پارامترهای فرآیندی روی خواص مغناطیسی، الکتریکی و جذب الکترومغناطیس رنگدانه نانوساختار استرانسیم هگزاگونال فریت

نوع مقاله : مقاله پژوهشی

نویسندگان

پژوهشکده رنگ و پلیمر، دانشگاه صنعتی امیرکبیر، تهران، ایران

چکیده

رنگدانه نانوساختار استرانسیم هگزاگونال فریت نوع M با ساختار شیمیایی SrFe12O19 در دماهای 1100-900 درجه سانتی‌گراد با روش‌های هم‌رسوبی و پچینی تهیه شدند. آنالیزهای پراش پرتو ایکس (XRD)، میکروسکوپ الکترونی روبشی گسیل میدانی (FESEM)، مغناطومتر نمونه مرتعش (VSM) و تحلیل‌گر برداری شبکه (VNA) جهت بررسی خواص ساختاری، مغناطیسی و دی الکتریک نانوذرات تهیه شده انجام گردید. با توجه به نتایج XRD، فاز استرانسیم هگزاگونال فریت در تمامی نمونه‌ها فاز غالب بوده و مقادیر شبکه بلوری تشکیل شده با تئوری آن سازگاری دارد. نتایج VSM و VNA نیز نشان داد که افزایش دمای کلسیناسیون، مغناطیس اشباع را افزایش و ثابت دی الکتریک را کاهش داده و بنابراین، نانوساختارهای سنتز شده قابلیت کاربرد در پوشش­های جاذب رادار در فرکانس­های بالا را دارا می باشند.

کلیدواژه‌ها


عنوان مقاله [English]

Investigating the Effect of Process Parameters on the Magnetic, Electrical and Electromagnetic Properties of Nanostructured Strontium Hexagonal Ferrite Pigment.

نویسندگان [English]

  • S.M. Maroofi
  • A.A. Sabbagh alvani
  • H. Sameie
  • R. Salimi
Color and Polymer Research Center (CPRC), Amirkabir University of Technology
چکیده [English]

M-type substituted strontium hexaferrite nanostructures were synthesized by pechini sol-gel route. The ferrites were investigated by using X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM), vibrating sample magnetometer (VSM) and performing network analyzer (PNA). In accordance with diffraction patterns, no extra peak was observed for the pure samples. VSM and PNA results showed that the saturation magnetization increased and the dielectric constant decreased with increasing calcination temperature. According to results, the synthesized nanoparticles are suitable for use in high frequency absorbers. 

کلیدواژه‌ها [English]

  • Nanostructure pigment
  • Strontium hexaferrite
  • Pechini sol-gel
  • Dielectric constant
1. N. Dishovsky, Rubber based composites with active behavior to microwaves. J. University Chem.l Technol. Metall. 44 (2009), 115-122.
2. D. E. Clark, Willard H. Sutton. Microwave processing of materials. Annu. Rev. Mater. Sci. 26 (1996), 299-331.
3. N. N. Al-Moayed, M. N. Afsar, U. Khan, S. McCooey, M. Obol. Nano ferrites microwave complex permeability and permittivity measurements by T/R technique in waveguide. Magnetics. IEEE Trans. 44(2008), 1768-1772.
4. M. R. Kumar, Z. J. Yu, R. Y. Hong. Low Temperature Synthesis of M-Type strontium hexaferrite nanocomposites. IEEE Magn. Lett. 8 (2017), 1-5.
5. K. K. Mallick, P. Shepherd, R. J. Green. Dielectric properties of M-type barium hexaferrite prepared by co-precipitation. J. Eur. Ceram. Soc. 27(2007), 2045-2052.

6. س. م. معروفی، ع. ا. صباغ الوانی، ح. سامعی، ح. ر. هدایتی، ر. سلیمی، س. حسینی. خ. مرادی، پوشش‌های کامپوزیتی جاذب امواج الکترومغناطیس: پارامترهای فرایندی و ساختاری مواد تشکیل دهنده. نشریه علمی ترویجی مطالعات در دنیای رنگ. (1394)5، 91-79.

7. A. M. Y. El‐Lawindy, S. A. Mansour, M. Hafiz, H. H. Hassan, A. A. Ali. Influence of the mole ratio, sintering condition and particle size on the magnetic properties of BaFe12O19 synthesized by ceramic method. Int. J. Appl. Ceram. Technol. 7 (2010), 868-873.
8. A. Drmota, J. Koselj, M. Drofenik, A. Žnidaršič. Electromagnetic wave absorption of polymeric nanocomposites based on ferrite with a spinel and hexagonal crystal structure. J. Magn. Magn. Mater. 324 (2012), 1225-1229.
9. M. Jamalian, A. Ghasemi, E. Paimozd. A comparison of the magnetic and microwave absorption properties of Mn–Sn–Ti substituted strontium ferrite with and without multi-walled carbon nanotube. Curr. Appl. Phys. 14 (2014), 909-915.
 
10. ح. ر. هدایتی، ع. ا. صباغ الوانی، ح. سامعی، ش. موسی‌خانی، ر. سلیمی، ف. طباطبایی، ع. امیری زرندی، پوشش‌های بازتاب‌دهنده امواج زیرقرمز نزدیک؛ از تئوری تا کاربرد. نشریه علمی ترویجی مطالعات در دنیای رنگ. (1393)4، 58-51
11. S. Ounnunkad, P. Winotai, S. Phanichphant. Effect of La doping on structural, magnetic and microstructural properties of Ba1− xLaxFe12O19 ceramics prepared by citrate combustion process. J. Electroceram. 16(2006), 357-361.
12. M. Zayat, D. Levy. Blue CoAl2O4 particles prepared by the sol-gel and citrate-gel methods. Chem. Mater. 12(2000), 2763-2769.
13. W. Li, J. Li, J. Guo. Synthesis and characterization of nanocrystalline CoAl2O4 spinel powder by low temperature combustion. J. Eur. Ceram. Soc. 23(2003), 2289-2295.
14. S. A. Eliziario, J. M. de Andrade, S. Lima, C. A. Paskocimas, L. Soledade, P. Hammer, E. Longo, A. G. Souza, I. Santos. Black and green pigments based on chromium–cobalt spinels. Mater. Chem. Phys. 129(2011), 619-624.
15. L. De Souza, J. R. Zamian, G. N. da Rocha Filho, L. Soledade, I. MG dos Santos, A. G. Souza, T. Scheller, R. S. Angélica, C. da Costa. "Blue pigments based on CoxZn1−xAl2O4 spinels synthesized by the polymeric precursor method. Dyes pigm. 81(2009), 187-192.
16. B. T. Shirk, Ba2Fe6O11: A new metastable compound. Mater. Res. Bull. 5 (1970), 771-777.
17. S. R. Janasi, D. Rodrigues, F. Landgraf, M. Emura. Magnetic properties of coprecipitated barium ferrite powders as a function of synthesis conditions. Magn. IEEE Trans. 36 (2000), 3327-3329.
 
18. ر. سلیمی، ح. سامعی، ع. ا. صباغ الوانی، ع. ا. سرابی، م. ر. تحریری، بررسی خواص فازی و نورتابی رنگدانه نانو بلور SrMgAl2SiO7: Eu2+ و رنگ‌سنجی فسفرهای نهایی. نشریه علمی پژوهشی علوم و فناوری رنگ. (1388)3، 256-251
19. R. Jenkins, R. Snyder, Introduction to X-ray powder diffractometry vol.267: John Wiley & Sons, 2012.
20. H. Jafari, M. Khajeh Mehrizi, S. Fattahi. The effect of inorganic nanoparticles on camouflage properties of cotton/polyester fabrics. Prog. Color, Colorants Coat. 9(2016), 29-40.
21. A. Babaei Darani, M. Khajeh Aminian, H. Zare. Synthesis and characterization of two green nanopigments based on chromium oxide. Prog. Color, Colorants Coat. 10 (2017), 141-148.
22.V. Aulok, Handbook of microwave ferrites, Academic Press, 1965.
23. J. Lin, M. Yu, C. Lin, X. Liu. Multiform oxide optical materials via the versatile Pechini-type sol-gel process: synthesis and characteristics. J. Phys. Chem. C. 111 (2007), 5835-5845.
24. C. R. Brundle, C. A. Evans, S. Wilson, Encyclopedia of materials characterization: Surfaces, interfaces, thin films, Gulf Professional Publishing, 1992.
25. R. Salimi, H. Sameie, A. A. Alvani, A. A. Sarabi, H. Eivaz Mohammadloo, F. Nargesian, M. Sabbagh Alvani, M. Tahriri. SrZn2Si2O7: Eu2+, Mn2+: a single-phased emission tunable nanophosphor suitable for white light emitting diodes. JOSA B. 30 (2013), 1747-1754.
26. M. N. Rahaman, Ceramic processing, Wiley Online Library, 2006.
27. J. D. Ng, B. Lorber, J. Witz, A. Théobald-Dietrich, D. Kern, R. Giegé. The crystallization of biological macromolecules from precipitates: evidence for Ostwald ripening. J. Cryst. Growth. 168 (1996), 50-62.
28. N. J. Shirtcliffe, S. Thompson, E. S. O’Keefe, S. Appleton, C. C. Perry. Highly aluminium doped barium and strontium ferrite nanoparticles prepared by citrate auto-combustion synthesis. Mater. Res. Bull. 42 (2007), 281-287.
29. J. M. D. Coey, Noncollinear spin arrangement in ultrafine ferrimagnetic crystallites. Phys. Rev. Lett. 27 (1971), 1140.
30. R. H. Kodama, A. E. Berkowitz, E. J. McNiff Jr, S. Foner. Surface spin disorder in NiFe2O4 nanoparticles. Phys. Rev. Lett. 77 (1996), 394.
31. S. Kurisu, T. Ido, H. Yokoyama. Surface effect on saturation magnetization of Co and Ti substituted Ba-ferrite fine particles. Magn. IEEE Trans. 23 (1987), 3137-3139.
32. M. A. Gilleo, Ferromagnetic materials: a handbook of the properties of magnetically ordered substances, EP Wohlfarth, 1980.
33. A. S. Albuquerque, J. D. Ardisson, W. Macedo, M. Alves. Nanosized powders of NiZn ferrite: synthesis, structure, and magnetism. J. Appl. Phys. 87 (2000), 4352-4357.
34. Y. Ebrahimi, A. A. Sabbagh Alvani, A. A. Sarabi, H. Sameie, R. Salimi, M. Sabbagh Alvani, S. Moosakhani. A comprehensive study on the magnetic properties of nanocrystalline SrCo 0.2 Fe 11.8 O 19 ceramics synthesized via diverse routes. Ceram. Int. 38 (2012), 3885-3892.
35. B. D. Cullity, C. D. Graham. Introduction to magnetic materialsIEEE Press.Piscataway, NJ (2009).
36. J. E. Knowles, The measurement of the anisotropy field of single" tape" particles. Magn. IEEE Trans. 20 (1984), 84-86.
37. Y. Cheng, Y. Zheng, Y. Wang, F. Bao, Y. Qin. Synthesis and magnetic properties of nickel ferrite nano-octahedra. J. Solid State Chem. 178 (2005), 2394-2397.
38. T. M. I. Mahlia, T. J. Saktisahdan, A. Jannifar, M. H. Hasan, H. S. C. Matseelar. A review of available methods and development on energy storage; technology update. Renewable Sustainable Energy Rev. 33 (2014): 532-545.
39. R. Y. Hong, B. Feng, G. Liu, S. Wang, H. Z. Li, J. M. Ding, Y. Zheng, D. G. Wei. Preparation and characterization of Fe3O4/polystyrene composite particles via inverse emulsion polymerization. J. Alloys Compd. 476(2009), 612-618.
40. A. Goldman, Modern ferrite technology, Springer, 2006.
41. I. Ali, M. U. Islam, M. S. Awan, M. Ahmad. Effects of heat-treatment time on the structural, dielectric, electrical, and magnetic properties of BaM hexaferrite. J. Mater. Eng. Perform. 22 (2013), 2104-2114.
42. M. M. Costa, P. Júnior, A. S. B. Sombra. Dielectric and impedance properties’ studies of the of lead doped (PbO)-Co2 Y type hexaferrite (Ba2Co2Fe12O22(Co2Y)). Mater. Chem. Phys. 123 (2010), 35-39.
43. I. H. Gul, A. Maqsood. Influence of Zn–Zr ions on physical and magnetic properties of co-precipitated cobalt ferrite nanoparticles. J. Magn. Magn. Mater. 316 (2007), 13-18.
44. M. N. Ashiq, M. J. Iqbal, M. Najam-ul-Haq, P. H. Gomez, A. M. Qureshi. Synthesis, magnetic and dielectric properties of Er–Ni doped Sr-hexaferrite nanomaterials for applications in High density recording media and microwave devices. J. Magn. Magn. Mater. 324 (2012), 15-19.
45. F. M. M. Pereira, M. R. P. Santos, R. S. T. M. Sohn, J. S. Almeida, A. M. L. Medeiros, M. M. Costa, A. S. B. Sombra. Magnetic and dielectric properties of the M-type barium strontium hexaferrite (BaxSr1−xFe12O19) in the RF and microwave (MW) frequency range. J. Mater. Sci. Mater. Electron. 20 (2009), 408-417.
46. S. Sanghi, A. Agarwal, N. Ahlawat. Structure refinement and dielectric relaxation of M-type Ba, Sr, Ba-Sr, and Ba-Pb hexaferrites. J. Appl. Phys. 112(2012), 014110.
47. J. Liu, X. Chen, S. Wang, L. Yan, M. Zhang. Synthesis and properties of strontium hexa-ferrite ultrafine powders via a CTAB-assisted co-precipitation method. Rare Met. 36 (2017), 666-670.
48. L. Xing, P. Shun‐kang, Z. Xing, C. Li‐chun. Microwave‐absorbing properties of strontium ferrites prepared via sol‐gel method. Crys. Res. Technol. 52 (2017).
49. K. Pubby, S. B. Narang, S. K. Chawla, P. Kaur. Microwave absorption properties of cobalt-zirconium doped strontium hexaferrites in ku-frequency band. J. Supercond. Novel Magn. 30 (2017), 1-6.