بررسی اثر زمان غوطه‌وری بر رفتار مقاومت به خوردگی پوشش تبدیلی وانادیم بر روی آلیاژ AZ31 منیزیم در حضور افزودنی سولفات مس

نوع مقاله : مقاله پژوهشی

نویسندگان

دانشکده مهندسی پلیمر و رنگ، دانشگاه صنعتی امیرکبیر، تهران، ایران

چکیده

با توجه به اهمیت روزافزون استفاده از آلیاژهای منیزیم در صنایع مختلف، بهبود مقاومت به خوردگی این زمینه، به یکی از موضوعات روز جهان تبدیل شده است. در این تحقیق پوشش تبدیلی وانادیم به عنوان روشی جهت محافظت از سطح آلیاژ AZ31 معرفی شد. در بخش اول اهمیت شرایط آماده‌سازی سطح در اعمال پوشش تبدیلی وانادیم بر روی سطح منیزیم بررسی شد. در بخش دوم اثر مدت زمان غوطه‌وری در محلول پوشش تبدیلی وانادیم مورد ارزیابی قرار گرفت و نتایج نشان داد که با غوطه‌وری نمونه به مدت 60 دقیقه، بیشینه مقاومت پلاریزاسیون (8100 اهم سانتی‌متر مربع) حاصل گردید. سپس در بخش بعدی اثر حضور سولفات مس بر کاهش زمان غوطه‌وری و افزایش مقاومت پلاریزاسیون مورد مطالعه قرار گرفت. نتایج نشان داد که حضور سولفات مس با غلظت 1 گرم بر لیتر نه تنها باعث کاهش زمان بهینه غوطه‌وری به 30 دقیقه می‌شود بلکه توانست مقاومت پلاریزاسیون پوشش را از 250 به  14300 اهم سانتی‌متر مربع افزایش دهد و نشان داده شد که این تغییر چشمگیر در تطابق با آزمون پلاریزاسیون نیز است. به طوری که دانسیته جریان خوردگی از 33.4 میکرو آمپر بر سانتی‌متر مربع به 0.53 میکروآمپر بر سانتی‌متر مربع کاهش یافت. در بخش آخر تصاویر میکروسکوپ الکترونی روبشی نشان داد که پوشش تبدیلی وانادیم به طور ذاتی دارای ترک می‌باشد و مشخص گردید کاهش تعداد حفرات موجود بر روی سطح پوشش و افزایش ضخامت لایه فشرده و یکنواخت نزدیک به سطح توجیه کننده مقاومت به خوردگی بالاتر پوشش تبدیلی در حضور سولفات مس است.

کلیدواژه‌ها


عنوان مقاله [English]

The Effect of Immersion Time on Electrochemical Behavior of Vanadium Conversion Coating Modified With Copper Sulphate on AZ31 Magnesium Alloy

نویسندگان [English]

  • M. Nabizadeh
  • A.A. Sarabi
Department of Polymer Engineering & Color Technology, Amirkabir University of Technology
چکیده [English]

The increasing application of magnesium alloys in various industries on the one hand and its low corrosion resistance on the other hand, have been a new challenge for researches around the world. In this study, vanadium conversion coating was investigated as a method for protection of AZ31 alloy. In the first section, the importance of surface pretreatment for applying conversion coating was studied. In the second part, the duration of immersion in the solution was investigated and the results showed that the coating reaches to its maximum resistance (8100 Ohm.cm2) in 60 minutes immersion. Then, in the next section, it will be seen how the addition of 1 g/l copper sulphate not only reduced the optimum immersion time to 30 minutes, but also increased the polarization resistance of the coating from 250 to 14300 Ohm.cm2. In addition it is clarified that this significant change is in compliance with the polarization test in which the corrosion current density decreased from 33.4×10-6 to 5.3×10-7 A/cm2. In the final section, the images of the FE-SEM showed that the surface of vanadium conversion coating was inherently cracked. Also, reducing the number of pits and increasing the thickness of compact and uniform layer next to the surface are the reasons of higher corrosion resistance for vanadium conversion coating in the presence of copper sulphate. 

کلیدواژه‌ها [English]

  • Vanadium conversion coating
  • Magnesium alloy
  • DC polarization
  • Electrochemical impedance Spectroscopy (EIS)
  • Scanning electron microscopy (SEM)
1. M. M. Avedesian, Hugh Baker, Magnesium and magnesium alloys, ASM International, Ohio, 1997, 6-40.
2. G. L. Song, Corrosion of magnesium alloys, Elsevier Science, 2011, 20-33.
3. G. L. Song, Corrosion Prevention of magnesium alloys, Elsevier Sci. 2013, 53-98.
4. M. D. Danford, The Corrosion protection of magnesium alloy AZ31B, Issue 206239 of NASA technical paper, 97(1997).
5. Carlos E. Castaño, Cerium-based conversion coatings on magnesium alloys, PhD Thesis, Missouri University of science, USA, 2014.
6. Dharma Raju Maddala, A Non-chromate Conversion Coating Process for Corrosion Protection of AL 2024-T3 Aluminum Alloy, University of Rhode Island, Kingston, 2007, 15-35.
7. R. G. Kelly, J. R. Scully, D. Shoesmith, R. G. Buchheit, Electrochemical techniques in corrosion science and engineering, CRC Press, Florida, 2002, 272-290.
8. M. A. Arenas, J. J. de Damborenea, Growth mechanisms of cerium layers on galvanised steel, Electrochimica Acta, 48 (2003), 3693-3698.
9. K. Aramaki, Treatment of Zinc surface with cerium nitrate to prevent zinc corrosion in aerated 0.5 M NaCl, Corros. Sci. 43(2001), 2201-2215.
10. X. Zhong, X. Wu, Y. Jia, Y. Liu, Self-repairing vanadium–zirconium composite conversion coating for aluminum alloys. Appl. Surf. Sci. 280(2013), 489-493.
11. Zh. Zou, N. Li, D. Li, H. Liu, S. Mu, A vanadium-based conversion coating as chromate replacement for electrogalvanized steel substrates. J. Alloys Compd. 509(2011), 503-507.
12. H. Eivaz Mohammadloo, A. A. Sarabi, Titanium-phytic acid nano structured conversion coating formationon CRS substrate. Prog. Org. Coat. 101 (2016), 391–399.

13. حسین عیوض محمدلو، علی‌اصغر سرابی، علی‌اصغر صباغ الوانی، حسن سامعی، رضا سلیمی، مقاومت به خوردگی و ریخت‌شناسی پوشش تبدیلی نانوسرامیک بر پایه هگزافلوئوروزیرکونیک اسید بر روی فولاد. نشریه علمی-پژوهشی علوم و فناوری رنگ. 6(1391)، 18-9.

14. H. Eivaz Mohammadloo, A. A. Sarabi, R. Mohammad Hosseini, M. Sarayloo, H. Sameie, R. Salimi, A comprehensive study of the green hexafluorozirconic acid-based conversion coating. Prog. Org. Coat. 77 (2014), 322– 330.
15. G. Wang, M. Zhang, R. Wu, Molybdate and molybdate/permanganate conversion coatings on Mg–8.5Li alloy. Appl. Surf. Sci. 258(2012), 2648-2654.
16. H. Y. Yang, X. B. Chen, X. W. Guo, Coating pretreatment for Mg alloy AZ91D. Appl. Surf. Sci. 258(2012), 5472– 5481.
17. A. S. Hamdy, I. Doench, H. Möhwald, Smart self-healing anti-corrosion vanadia coating for magnesium alloys. Prog. Org. Coat. 72 (2011), 387– 393.
18. J. Livage, Sol-gel chemistry and electrochemical properties of vanadium oxide gel, Solid State Ionic, 86-88(1996), 935-942.
19. K. H. Yang, M. D. Ger, W. H. Hwu, Y. Sung, Study of vanadium-based chemical conversion coating on the corrosion resistance of magnesium alloy. Mater. Chem. Phys. 101(2007), 480–485.
20. A. S. Hamdy, I. Doench, H. Möhwald, Smart self-healing anti-corrosion vanadia coating for magnesium alloys. Prog. Org. Coatings. 72(2011), 387–393.
21. K. Li, J. Liu, T. Lei, T. Xiao, Optimization of process factors for self-healing vanadium-based conversion coating on AZ31 magnesium alloy. Appl. Surf. Sci. 353(2015), 811–819.
22. R. Guo, X. Jiang, Sh. Jiang, Evaluation of self-healing ability of Ce–V conversion coating on AZ31 magnesium alloy. J. Magnesium Alloys. 4 (2016), 166-174.
23. A. S. Hamdy, I. Doench, H. Möhwald, Assessment of a one-step intelligent self-healing vanadia protective coatings for magnesium alloys in corrosive media. Electrochim. Acta. 56(2011), 2493–2502.
24. H. Y. Yang, X. B. Chen, X. W. Guo, Coating pretreatment for Mg alloy AZ91D. Appl. Surf. Sci. 258(2012), 5472– 5481.
25. X. B. Chen, N. Birbilis, T. B. Abbott, Review of corrosion-resistant conversion coatings for magnesium and its alloys. Corros. J. Sci. Technol. 67 (2011), 7-38.
26. M. Dabala, K. Brunelli, E. Napolitani, M. Magrini, Cerium-based chemical conversion coating on AZ63 magnesium alloy. Surf. Coat. Technol. 172 (2003), 227–232.
27. S. K. Tiwari, R. K. Sahu, A. K. Pramanick, Raghuvir Singh, Development of conversion coating on mild steel prior to sol gel nanostructured Al2O3 coating for enhancement of corrosion resistance. Surf. Coat. Technol. 205 (2011), 4960- 4967.
28. F. Mansfeld, Tafel slopes and corrosion rates from polarization resistance measurements. Corros. 29(1973), 397-402.
29. X. Zhang, C. Van den Bos, W. G. Sloof, A. Hovestad, H. Terryn, Comparison of the morphology and corrosion performance of Cr(VI)- and Cr(III)-based conversion coatings on zinc. Surf. Coat. Technol. 199 (2005), 92-104.
30. L. M. Baugh, Corrosion and polarization characteristics of zinc in neutral—acid media — I. Pure zinc in solutions of various sodium salts. Electroch. Acta. 24 (1979), 657-667.
31. L. Fedrizzi, L. Ciaghi, P. L. Bonora, R. Fratesi, G. Roventi, Corrosion behavior of electrogalvanized steel in sodium chloride and ammonium sulphate solutions; a study by E.I.S. J. Appl. Electrochem. 22 (1992), 247-254.
32. E. McCafferty, Introduction to corrosion science, Springer, Washington, 2009, 278-291.
33. Y. S. Choi, J. J. Shim, J. G. Kim, J. Aluminum Compd. 391 (2005), 162-169.
34. M. E. Orazem, B. Tribollet, Electrochemical Impedance Spectroscopy, John Wiley & Sons, Florida, 2011, 290-312.
35. K. Cho, V. Rao, H. Kwon, Microstructure and electrochemical characterization of trivalent chromium based conversion coating on zinc. Electrochim. Acta. 52 (2007), 4449–4456.
36. R. G. Kelly, J. R. Scully, D. Shoesmith, R. G. Buchheit, Electrochemical techniques in corrosion science and engineering, CRC Press, Virginia, 2002, 289-295.
37. H. E. Mohammadloo; A. A. Sarabi, M. Hosseini, R; M. Sarayloo, H. Sameie, R. Salimi, A comprehensive study of the green hexafluorozirconic acid-based conversion coating. Prog. Org. Coat. 77(2014), 322-330.
38. S. Adhikari, K. A. Unocic, Y. Zhai, G. S. Frankel, J. Zimmerman, W. Fristad, Hexafluorozirconic acid based surface pretreatments: Characterization and performance assessment. Electrochim. Acta. 2011.
39. T. Lostak, S Krebs, A Maljusch, T Gothe, M Giza, M Kimple, J Flock, S Schulz, “Formation and characterization of Fe3+-/Cu2+-modified zirconium oxide conversion layers on zinc alloy coated steel sheets. Electrochim. Acta. 112 (2013) , 14-23.
40. Y. Kobayashi , Y. Fujiwara, Effect of SO42− on the corrosion behavior of cerium-based conversion coatings on galvanized steel. Electrochim. Acta. 51 (2006), 4236–4242.
41. A. S. Hamdy, I. Doench, H. Möhwald, Smart self-healing anti-corrosion vanadium coating for magnesium alloys. Prog. Org. Coat. 72 (2011), 387– 393
42. L. Niu, Sh. H. Chang, X. Tong , G. Li , Z. Shi, Analysis of characteristics of vanadate conversion coating on the surface of magnesium alloy. J. Alloys Compd. 617(2014), 214–218.
43. X. Jiang, R. Guo, S. Jiang, Microstructure and corrosion resistance of Ce–V conversion coating on AZ31 magnesium alloy. Appl. Surf. Sci. 341(2015), 166–174.
44. Z. Yang, G. Xia, G. D.Maupin, J. W. Stevenson, Conductive protection layers on oxidation resistant alloys for SOFC interconnect applications. Surf. Coat. Technol. 201(2006), 4476-4483.
45. H. W. Liu Jianrui, G. Yin, Study on the corrosion resistance of phytic acid conversion coating for magnesium alloys. Surf. Coatings Technol. 201(2006), 1536–1541.
46. W. P Campestrini, H Terryn, A Hovestad, Formation of a cerium-based conversion coating on AA2024: relationship with the microstructure. Surf. Coatings Technol. 176(2004), 365–381.
47. N. Van Phoung, M. Gupta, S. Moon, Enhanced corrosion performance of magnesium phosphate conversion coating on AZ31 magnesium alloy. Trans. Nonferrous Met. Soc. China. 27(2017), 1087–1095.
48. G. Lorin, Phosphating of metals-constitution, Finishing Publications Ltd., Middlesex, 1974.
49. I. M. Notter, D. R. Gabe, Corrosion reviews, 5 (1992), 217.
50. J. Creus, H. Mazille, H. Idrissi, “Porosity evaluation of protective coatings onto steel, through electrochemical techniques. Surf. Coat. Technol. 130 (2000), 224-232.