اثر زمان پیرسازی محلول شستشوی اسید سولفوریک حاوی ماده فعال‌کننده سطح بر عملکرد حفاظتی پوشش سیلان

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشکده مهندسی متالورژی و مواد، پردیس دانشکده‌های فنی، دانشگاه تهران، تهران، ایران

2 پژوهشکده پوشش‌های سطح و فناوری‌های نوین، گروه پژوهشی خوردگی و پوشش‌های سطح، موسسه پژوهشی علوم و فناوری رنگ و پوشش، تهران، ایران

چکیده

پایداری محلول اسیدشویی حاوی ppm 100 آب اکسیژنه، به عنوان فعال‌کننده سطح و 1 میلی‌مولار بنزوتایازول به عنوان بازدارنده خوردگی، طی 12 روز انبارداری با استفاده از آزمون‌های طیف‌سنجی امپدانس الکتروشیمیایی (EIS)، پلاریزاسیون، میکروسکوپ الکترونی روبشی با وضوح بالا (HRSEM) و میکروسکوپ نیروی اتمی(AFM)  مورد بررسی قرار گرفت. نتایج EIS و پلاریزاسیون نشان داد میزان مقاومت به خوردگی در حضور آب اکسیژنه پس از 12 روز بسیار کمتر از حالتی است که فاقد آب اکسیژنه است. نتایج HRSEM نیز متراکم‌تر شدن و متخلخل شدن محصولات خوردگی را نمایش داد. نتایج AFM نیز افزایش زبری سطح، طی زمان انبارداری را نشان داد. نتایج EIS بر روی پوشش سیلانی آماده‌سازی شده با محلول‌های اسیدی نشان داد مقاومت خوردگی پوشش طی زمان انبارداری افت می­کند. با این حال در حضور آب اکسیژنه در حالت بدون انبارداری، مقاومت بیشتر از حالتی است که از آب اکسیژنه استفاده نشده است.

کلیدواژه‌ها


عنوان مقاله [English]

Effect of Aging Time of Sulfuric Acid Cleaning Solution Containing a Surface Activating Agent on Protective Performance of Silane Coating

نویسندگان [English]

  • S.M. Orouji 1
  • R. Naderi 1
  • M. Mahdavian 2
1 School of Metallurgy and Materials Engineering, College of Engineering, University of Tehran, Tehran
2 Department of Surface Coatings & Corrosion, Institute for Color Science and Technology
چکیده [English]

The stability of acid treatment solution containing 100 ppm hydrogen peroxide, as a surface activating agent and 1 mM benzothiazole, as a corrosion inhibitor during 12 days of storage was investigated using electrochemical impedance spectroscopy (EIS), polarization test, high resolution scanning electron microscopy (HRSEM) and atomic force microscopy (AFM). The results of EIS and polarization showed that in the presence of H2O2, corrosion resistance is much less than the one contains no H2O2 after aging. According to the results of HRSEM, corrosion products became denser and more porous. Surface roughness increased over aging time and therefore confirmed the previous results. In the following, protective performance of silane sol-gel coating applied on mild steels treated in acid solutions in both fresh and stored conditions was examined using EIS. It was founded the coating resistance decreased during storage. However, the coating on the surface treated by fresh acid solution containing H2O2 had the superior protection compared to the one containing no activating agent. 

کلیدواژه‌ها [English]

  • Mild steel
  • Acid treatment
  • Hydrogen peroxide
  • Silane sol-gel coating
1. H. Ashassi-Sorkhabi, S. Nabavi-Amri, Polarization and impedance methods in corrosion inhibition study of carbon steel by amines in petroleum–water mixtures. Electrochim. Acta. 47(2002), 2239-2244.
2. T. T. X. Hang, T. A. Truc, M. G. Olivier, C. Vandermiers, N. Guérit, N. Pébère, Corrosion protection mechanisms of carbon steel by an epoxy resin containing indole-3 butyric acid modified clay. Prog. Org. Coat. 69(2010), 410-416.
3. G. Grundmeier, W. Schmidt, M. Stratmann, Corrosion protection by organic coatings: electrochemical mechanism and novel methods of investigation. Electrochim. Acta. 45(2000), 2515-2533.
4. Z. Chai, Organic Coatings for Corrosion Control. ACS Symposium Series 689 Edited by Gordon P. Bierwagen (North Dakota State University). Oxford Press: New York. 1998. xiii+ 448 pp. ISBN 0-8412-3549-X. 1999, ACS Publications.
5. A. Magalhães, I. Margarit, O. Mattos, Electrochemical characterization of chromate coatings on galvanized steel. Electrochim. Acta. 44(1999), 4281-4287.
6. C. Berry, A Guide to Hexavalent Chromium Cr (VI) for Industry, 2011.
7. E. P. Plueddemann, Reminiscing on silane coupling agents. J. Adhes. Sci. Technol. 5(1991), 261-277.
8. W. J. Van Ooij, D. Zhu, M. Stacy, A. Seth, T. Mugada, J. Gandhi, P. Puomi, Corrosion protection properties of organofunctional silanes—an overview. Tsinghua Sci. Technol. 10(2005), 639-664.
9. D. Balgude, A. Sabnis, Sol–gel derived hybrid coatings as an environment friendly surface treatment for corrosion protection of metals and their alloys. J. Sol-Gel Sci. Technol. 64(2012), 124-134.
10. W. J. Van Ooij, D. Zhu, V. Palanivel, J. A. Lamar, M. Stacy, Overview: the potential of silanes for chromate replacement in metal finishing industries. Silicon Chem. 3(2006), 11-30.
11. T. P. Chou, C. Chandrasekaran, S. J. Limmer, S. Seraji, Y. Wu, M. J. Forbess, C. Nguyen, G. Z. Cao, Organic–inorganic hybrid coatings for corrosion protection. J Non-Cryst. Solids. 290(2001), 153-162.
12. م. رستمی، م. محسنی، ز. رنجبر، آمایش نانوسیلیکا با آمینوسیلان: بررسی اثر pH واکنش بر خواص سطحی و کاربردی ذره. نشریه علمی پژوهشی علوم و فناوری رنگ. (1389)4، 82-71.
13. م. رستمی، م. محسنی، ز. رنجبر، آمایش سطحی نانوسیلیکا با ماده پیونددهنده اپوکسی سیلان به منظور بهبود خواص آن در بستر پلی‌یورتان. نشریه علمی پژوهشی علوم و فناوری رنگ، (1394)9، 33-21.
14. س.ا. حسینی، م. رستمی درونکلا، ر. امینی، بررسی تغییرات خواص مکانیکی و حرارتی چسب‌های حساس به فشار برپایه لاستیک بیوتیل با استفاده از نانوذرات سیلیکای اصلاح شده با مرکاپتوسیلان. نشریه علمی پژوهشی علوم و فناوری رنگ (1396)11، 44-35.

15. D. Wang, G. P. Bierwagen, Sol–gel coatings on metals for corrosion protection. Prog. Org. Coat. 64(2009), 327-338.
16. L. Liu, J. M. Hu, J. Q. Zhang, C. N. Cao, Improving the formation and protective properties of silane films by the combined use of electrodeposition and nanoparticles incorporation. Electrochim. Acta. 52 (2006), 538-545.
17. A. Franquet, C. Le Pen, H. Terryn, J. Vereecken, Effect of bath concentration and curing time on the structure of non-functional thin organosilane layers on aluminium, Electrochim. Acta. 48(2003), 1245-1255.
18. D. Y. Nadargi, A. V. Rao, Methyltriethoxysilane: New precursor for synthesizing silica aerogels. J. Alloys Compd. 467 (2009), 397-404.
19. E. P. Plueddemann, Chemistry of silane coupling agents. Silane coupling agents. Springer, Boston, 1991.
20. W. J. Van Ooij, M. Stacy, A. Seth, T. Mugada, J. Gandhi, P. Puomi, Corrosion protection properties of organofunctional silanes—an overview. Tsinghua Sci. Technol. 10(2005), 639-664.
21. N. Asadi, R. Naderi, M. Saremi, S. Y. Arman, M. Fedel, F. Deflorian, Study of corrosion protection of mild steel by eco-friendly silane sol–gel coating. J. Sol-Gel Sci. Technol. 70(2014), 329-338.

22. م.ر. چیذری، ز. رنجبر، م. مهدویان احدی، پوشش‌های سیلانی سطوح گالوانیزه: مروری بر روش‌های سل-ژل برنشانی، پارامترهای مؤثر بر خواص و روش-های ارزیابی. نشریه علمی ترویجی مطالعات در دنیای رنگ. (1394)5، 29-13.

23. A. Franquet, H. Terryn, J. Vereecken, Study of the effect of different aluminium surface pretreatments on the deposition of thin non‐functional silane coatings. Surf. Int. Anal. 36(2004), 681-684.
24. S. S. Rouzmeh, R. Naderi, M. Mahdavian, A sulfuric acid surface treatment of mild steel for enhancing the protective properties of an organosilane coating. Prog. Org. Coat. 103(2017), 156-164.
25. M. Motamedi, A. R. Tehrani-Bagha, M. Mahdavian, Effect of aging time on corrosion inhibition of cationic surfactant on mild steel in sulfamic acid cleaning solution. Corros. Sci. 70(2013), 46-54.
26. D. Wang, G. P. Bierwagen, Sol–gel coatings on metals for corrosion protection. Prog. Org. Coat. 64(2009), 327-338.
27. B. Hirschorn, M. E. Orazem, B. Tribollet, V. Vivier, I. Frateur, M. Musiani, Determination of effective capacitance and film thickness from constant-phase-element parameters. Electrochim. Acta. 55(2010), 6218-6227.
28. M. Quraishi, F. Ansari, Corrosion inhibition by fatty acid triazoles for mild steel in formic acid. J. Appl. Electrochem. 33(2003), 233-238.
29. M. Mahdavian, S. Ashhari, Corrosion inhibition performance of 2-mercaptobenzimidazole and 2-mercaptobenzoxazole compounds for protection of mild steel in hydrochloric acid solution. Electrochim. Acta. 55(2010), 1720-1724.
30. F. M. Geenen, Characterisation of organic coatings with impedance measurements: a study of coating structure, adhesion and underfilm corrosion. Delft University of Technology, TU Dlft , 1991.