آنالیز پروفایل قطره نامتقارن روی سطوح افقی، شیب‌دار و دارای انحنا با استفاده از پردازش تصویر

نوع مقاله : مقاله پژوهشی

نویسندگان

دانشکده مهندسی شیمی و نفت، دانشگاه صنعتی شریف

چکیده

یکی از روش‌های متداول برای تعیین خاصیت ترشوندگی سطوح، اندازه‌گیری زاویه تماس قطره روی آن سطح است. اگرچه محاسبه زاویه تماس قطره روی سطوح افقی، مفصل مورد بررسی قرار گرفته است ولی تعیین زاویه تماس برای قطره نامتقارن روی سطوح شیب‌دار و به ویژه دارای انحنا در حال حاضر عمدتاً از روش­های مبتنی بر خط مماس انجام می‌شود که این روش‌ از دقت و سرعت کافی برخوردار نیست. هدف اصلی از این مطالعه ارائه الگوریتمی مؤثر برای تعیین زاویه تماس قطره روی سطوح شیب‌دار و دارای انحنا بدون استفاده از مشخصه‌های سیال از قبیل چگالی و حجم قطره می­باشد. بدین منظور از تصاویر واقعی و مصنوعی قطره استفاده شده است. روش توسعه داده شده از تصاویر جانبی قطره استفاده می‌کند و ماتریس دوتایی تصویر را با استفاده از روش اتسو ایجاد می­نماید. سپس محل تماس سه فاز جامد-سیال-سیال تشخیص داده می‌شود و در ادامه زاویه تماس با کمک تعیین مشتق در سطح تماس سه فاز محاسبه می‌شود. به دلیل مشکلاتی که در تعیین محل تماس سه فاز وجود دارد، بجای محاسبه مشتق تنها در یک پیکسل، از چندین پیکسل و میانگین‌گیری به‌منظور کاهش این اثر برای اندازه‌گیری زاویه تماس استفاده شده است. به‌منظور اعتبارسنجی روش پیشنهادی، تصاویر واقعی قطره چهار سیال مختلف روی سطح کلسیت افقی و همچنین تصاویر مصنوعی ایجادشده به کمک نرم‌افزارهای گرافیکی با زاویه تماس مشخص مورد استفاده قرار گرفته است. نتایج نشان‌دهنده دقت مناسب روش پیشنهادی برای محاسبه زاویه تماس قطره متقارن و نامتقارن روی سطوح افقی، شیب‌دار و دارای انحنا است.

کلیدواژه‌ها


عنوان مقاله [English]

Analysis of Asymmetric Drop Shape on Horizontal, Inclined and Curved Surfaces by Using Image Process

نویسندگان [English]

  • M. Azadi Tabar
  • F. Barzegar
  • M.H. Ghazanfari
School of Chemical and Petroleum Engineering, Sharif University of Technology
چکیده [English]

Contact angle measurement of a drop on surface is known as a common method for determining the surfaces wettability. Although the drop contact angle measurement on horizontal surface is fully-described, but contact angle measurement for the asymmetric drop on inclined and specially curved surfaces, mainly is analyzed by tangent line method, suffers from inadequate accuracy and speed. The main objective of this study is to introduce an effective algorithm for determining the contact angle of drops on inclined and curved surfaces without using fluid parameters such as density and drop volume. For this purpose, real and artificial image of drops are used. The developed method uses side view image of drops and creates the binary matrix of the image by using the Otsu method. Then, the solid-fluid-fluid interface is detected and the contact angle is calculated by means of determining the derivative at the three phases contact point. One problem which contact angle measurement faces with is determination of the location of  three-phase contact point, instead of calculating the derivative based on just one pixel, averaging of several pixels are used to reduce effect of this problem. In order to validate the proposed method, real images of the drops of four different fluids on the calcite surface, as well as artificial images created with the aid of graphic software with a specific contact angle, are used. The results show the accuracy of the proposed method for contact angle measurement of the symmetric and asymmetric drop on horizontal, inclined and curved surfaces.

کلیدواژه‌ها [English]

  • Contact angle measurement
  • Image process
  • Asymmetric drop
  • Curved surface
  • Binarization
  1. F. Eslami, J. A. Elliott, Thermodynamic investigation of the barrier for heterogeneous nucleation on a fluid surface in comparison with a rigid surface. J. Phys. Chem. B. 115(2011),  10646-10653.
  2. A. Cassie, Contact angles, Discuss. Faraday Soc. 3(1948), 11-16.
  3. D. Janssen, R. De Palma, S. Verlaak, P. Heremans, W. Dehaen, Static solvent contact angle measurements, surface free energy and wettability determination of various self-assembled monolayers on silicon dioxide. Thin Solid Films. 515(2006), 1433-1438.
  4. E. Chibowski, R. Perea-Carpio, Problems of contact angle and solid surface free energy determination. Adv. Colloid Int. Sci. 98(2002), 245-264.
  5. آ. الماسیان، م. پروین‌زاده گشتی، رنگبری رنگزای بازیک بر روی الیاف پشم پوشش داده شده با نانو ذرات دی‌اکسید زیرکونیم با پرتودهی فرابنفش. نشریه علمی پژوهشی علوم و فناوری رنگ. (1392)7، 13-1.
  6. A. Dehghan Monfared, M. H. Ghazanfari, M. Jamialahmadi, A. Helalizadeh, Potential application of silica nanoparticles for wettability alteration of oil–wet calcite: A Mechanistic study. Energy Fuels. 30(2016), 3947-3961.
  7. A. D. Monfared, M. Ghazanfari, M. Jamialahmadi, A. Helalizadeh, Adsorption of silica nanoparticles onto calcite: Equilibrium, kinetic, thermodynamic and DLVO analysis. Chem. Eng. J. 281(2015), 334-344.
  8. A. F. Stalder, T. Melchior, M. Müller, D. Sage, T. Blu, M. Unser, Low-bond axisymmetric drop shape analysis for surface tension and contact angle measurements of sessile drops. Colloids Surf. A. 364(2010), 72-81.
  9. H. R. E. Gahrooei, M. H. Ghazanfari, Application of a water based nanofluid for wettability alteration of sandstone reservoir rocks to preferentially gas wetting condition. J. Mol. Liq. 232(2017), 351-360.
  10. C. Maze, G. Burnet, A non-linear regression method for calculating surface tension and contact angle from the shape of a sessile drop. Surf. Sci. 13(1969), 451-470.
  11. O. Del Rı́o, A. Neumann, Axisymmetric drop shape analysis: computational methods for the measurement of interfacial properties from the shape and dimensions of pendant and sessile drops. J. Colloid Int. Sci. 196(1997), 136-147.
  12. E. Moy et al., Measurement of contact angles from the maximum diameter of non-wetting drops by means of a modified axisymmetric drop shape analysis. Colloids Surf. 58(1991), 215-227.
  13. J. Alvarez, A. Amirfazli, A. Neumann, Automation of the axisymmetric drop shape analysis-diameter for contact angle measurements. Colloids Surf. A. 156(1999), 163-176.
  14. M. E. Shanahan, An approximate theory describing the profile of a sessile drop. J. Chem. Soc. Faraday Trans. 1. 78(1982), 2701-2710.
  15. J. S. Allen, An analytical solution for determination of small contact angles from sessile drops of arbitrary size. J. Colloid Int. Sci. 261(2003), 481-489.
  16. M. E. Shanahan, Contact—angle evaluation from small sessile drops: A simplified perturbation approach. J. Colloid Int. Sci. 106(1985), 263-264.
  17. C. Atae-Allah, M. Cabrerizo-Vílchez, J. Gómez-Lopera, J. Holgado-Terriza, R. Román-Roldán, and P. Luque-Escamilla, Measurement of surface tension and contact angle using entropic edge detection. Meas. Sci. Technol. 12(2001), 288.
  18. N. Otsu, A threshold selection method from gray-level histograms. IEEE Trans. Syst. Man. Cybern. 9(1979), 62-66.
  19. G. Johannsen, J. Bille, A threshold selection method using information measures. in ICPR, 82(1982), 140-143.
  20. J. N. Kapur, P. K. Sahoo, A. K. Wong, A new method for gray-level picture thresholding using the entropy of the histogram. Computer vision, graphics, and image processing, 29(1985), 273-285.
  21. J. Sauvola, M. Pietikäinen, Adaptive document image binarization. Pattern recognition. 33(2000), 225-236.
  22. W. Niblack, An introduction to digital image processing. Strandberg Publishing Company, 1985.
  23. J. Bernsen, Dynamic Thresholding of gray level image. Proceedings of International Conference on Pattern Recognition,(1986), 1251-1255, 1986.
  24. J. Kittler, J. Illingworth, Minimum error thresholding. Pattern recognition. 19(1986), 41-47.
  25. T. R. Singh, S. Roy, O. I. Singh, T. Sinam, K. Singh, A new local adaptive thresholding technique in binarization. arXiv preprint arXiv:1201.5227, 2012.
  26. M. Unser, Splines: A perfect fit for signal and image processing, IEEE Signal processing magazine,16(1999), 22-38.
  27. D. Li, P. Cheng, A. Neumann, Contact angle measurement by axisymmetric drop shape analysis (ADSA). Adv. Colloid Int. Sci. 39(1992), 347-382.
  28. B. B. Lee, E. S. Chan, P. Ravindra, T. A. Khan, Surface tension of viscous biopolymer solutions measured using the du Nouy ring method and the drop weight methods. Polym. Bulletin. 69(2012), 471-489.
  29. M. Gindl, G. Sinn, W. Gindl, A. Reiterer, S. Tschegg, A comparison of different methods to calculate the surface free energy of wood using contact angle measurements. Colloids Surf. A. 181(2001), 279-287.
  30. A. Kozbial et al., Study on the surface energy of graphene by contact angle measurements. Langmuir. 30(2014), 8598-606.
  31. W. Choi, A. Tuteja, J. M. Mabry, R. E. Cohen, G. H. McKinley, A modified Cassie-Baxter relationship to explain contact angle hysteresis and anisotropy on non-wetting textured surfaces. J Colloid Int. Sci. 339(2009), 208-216.
  32. J. Drelich, J. L. Wilbur, J. D. Miller, G. M. Whitesides, Contact angles for liquid drops at a model heterogeneous surface consisting of alternating and parallel hydrophobic/hydrophilic strips. Langmuir. 12(1996), 1913-1922.
  33. J. Drelich, The effect of drop (bubble) size on contact angle at solid surfaces. J. Adhesion. 63(1997), 31-51.
  34. D. Li, Drop size dependence of contact angles and line tensions of solid-liquid systems. Colloids Surf. A. 116(1996), pp. 1-23, 1996.
  35. D. Li, F. Lin, A. Neumann, Effect of corrugations of the three-phase line on the drop size dependence of contact angles. J. Colloid Int. Sci. 142(1991), 224-231.
  36. D. Li, A. Neumann, Determination of line tension from the drop size dependence of contact angles. Colloids Surf. 43(1990), 195-206.
  37. J. Zhang, J. Hu, Image segmentation based on 2D Otsu method with histogram analysis. in Computer Science and Software Engineering, 2008 International Conference. 6(2008), 105-108: IEEE.
  38. R. David, M. K. Park, A. Kalantarian, A. W. Neumann, Drop size dependence of contact angles on two fluoropolymers. Colloid Polym. Sci. 287(2009), 1167-1173.