ساخت و بررسی مشخصات ساختاری نانورنگدانه‌های سرامیکی Cr2O3، CoCr2O4 و Al2O3-2Cr2O3 به روش هیدروترمال

نوع مقاله : مقاله پژوهشی

نویسندگان

1 آزمایشگاه نانورنگدانه‌ها و پوشش‌های سرامیکی، دانشکده فیزیک، دانشگاه یزد

2 آزمایشگاه نانو نانورنگدانه‌ها و پوشش‌های سرامیکی، دانشکده فیزیک، دانشگاه یزد

چکیده

نانورنگدانه‌های بر پایه اکسید کرم در زمینه‌های زیادی مانند پوشش، مواد پوششی و مقاومتی، مواد جاذب H2 و مواد رنگدهنده نوین به طور گسترده استفاده می‌شوند. در این پژوهش نانورنگدانه‌های سرامیکی بر پایه اکسید کرم با ترکیب‌های اکسید کرم (Cr2O3)، کبالت کرومیت (CoCr2O4) و اکسید آلومینیم - اکسید کرم (Al2O3-2Cr2O3) به روش هیدروترمال ساخته شد و در دمای ºC 770 به مدت 4 ساعت بازپخت شدند. رنگدانه‌های آماده شده توسط آزمون‌های پراش پرتوایکس (XRD) و میکروسکوپ الکترونی روبشی SEM)) مورد ارزیابی و بررسی قرار گرفته‌اند. نتایج XRD نشان می­دهد نمونه‌های اکسید کرم و کرومیت کبالت تک فازی و نمونه اکسید آلومینیم - اکسید کرم چند فازی بوده است. تصاویر میکروسکوپ الکترونی روبشی نیز نشان داد که متوسط اندازه ذرات برای نانورنگدانه‌های اکسید کرم، کرومیت کبالت و اکسید آلومینیم -اکسید کرم به ترتیب 57، 33 و 83 نانومتر است. طیف بازتاب و رنگ‌سنجی نمونه‌ها نیز مورد ارزیابی قرار گرفت. نانورنگدانه‌های به دست آمده در این پژوهش دارای فام‌های سبز و سبز مایل به زرد بودند.

کلیدواژه‌ها


عنوان مقاله [English]

Synthesis and Study the Structural Characteristics of Cr2O3, CoCr2O4 and Al2O3-2Cr2O3 Ceramic Nano Pigments by Hydrothermal Method

نویسندگان [English]

  • A. Babaei Darani 1
  • M. Khajeh Aminian 2
  • S. Ardeshiri 1
  • H. Zare 2
1 Nano Pigments and Coatings Lab., Department of Physics, Yazd University, Yazd, Iran
2 Nano Pigments and Coatings Lab., Department of Physics, Yazd University, Yazd, Iran
چکیده [English]

Chromium oxide based nanopigments are widely used in many fields such as coating, wear and wear resistance materials, H2 absorbent material and advanced colorants. In this paper, chromium oxide-based nano pigments of Cr2O3, CoCr2O4 and Al2O3-2Cr2O3 were synthesized via hydrothermal method and then calcinated at 770 °C for 4 h. The prepared samples were characterized by X-ray diffraction (XRD) and scanning electron microscopy (SEM). The results of XRD analysis show that Cr2O3 and CoCr2O4 were crystallized in a single-phase structure while Al2O3-2Cr2O3 was crystallized in multi-phase structure. SEM images show that the pigments are nanostructures and the average particle size of Cr2O3, CoCr2O4 and Al2O3-2Cr2O3 nanopigments were about 57, 33 and 83 nm, respectively. The samples were also characterized by diffuse reflectance spectroscopy (DRS) and CIE-L*a*b* colorimetric measurement. The nanopigments obtained in this work presented different colors such as green and greenish yellow colors. 

کلیدواژه‌ها [English]

  • Ceramic
  • Nanopigment
  • Cr2O3
  • CoCr2O4
  • Al2O3-2Cr2O3
  • Hydrothermal
  1. P. M. T. Cavalcante1, M. Dondi, G. Guarini, M. Raimondo, G. Baldi, Colour performance of ceramic nano-pigments. Dyes pigm. 80(2009), 226-232.
  2. ر. دهقان بنادکی، م. خواجه امینیان. بررسی تغییر در شکل و اندازه ذرات نانورنگدانه قرمز مالاییت با ناخالصی کرم با تغییر میزان ناخالصی. نشریه علمی پژوهشی علوم و فناوری رنگ. (1396)11، 223-215.
  3. H. G. Völz, Industrial color testing: fundamentals and techniques. Wiley-VCH.  3(1995).
  4. 4.                     S. E. Fendorf, R. J. Zasoski, Chromium (III) oxidation by delta-manganese oxide (MnO2) Characterization. Environ. Sci. Technol. 26(1992), 79-85.
  5. ب. میرهادی، تئوری و فناوری سرامیک‌های ساختمانی، تهران، شهاب ثاقب، ص45 ، 1386.
  6. ا. درمیانی، غ.ر. راشد، د. زارعی، ا. دانایی، پوشش­های ضد خوردگی سیلانی جایگزین پوشش­های تبدیلی کرومیت و اثر نمک­های عناصر کمیاب خاکی بر عملکرد آنها. مطالعات در دنیای رنگ. (1391)2، 20-9.
  7. D. Gingasu, I. Mindru, D. C. Culita, L. Patron, J. M. Calderon-Moreno, P. Osiceanu, S. Preda, O.  Oprea, V. Parvulescu, V. Teodorescu, J. P. S. Walsh, Structural magnetic and catalytic properties of cobalt chromite obtained through precursor method. Mater. Res. Bull. 62(2015), 52–64.
  8. V. I. Torgashev, A. S. Prokhorov, G. A. Komandin, E. S. Zhukova, V. B. Anzin, V. M. Talanov, L. M. Rabkin, A. A. Bush, M. Dressel, M. B. P. Gorshunov, Magnetic and dielectric response of cobalt-chromium spinel CoCr2O4 in the terahertz frequency range.  Phys. Solid State. 54(2012), 350-359.
  9. H. Cui, M. Zayat, D. Levy, Sol-gel synthesis of nanoscaled spinels using propylene oxide as a gelation agent.  J. Sol-Gel Sci. Technol. 35(2005), 175-181.
  10. W. Herbst, K. Hunger, Industrial organic pigments: production, properties, applications. John Wiley & Sons. 2006.
  11. V. Balouria, A. Singh, A. K. Debnath, A. Mahajan, R. K. Bedi, D. K. Aswal, S. K. Gupta, R. Mittal, A. K. Chauhan, R. Mukhopadhyay, Synthesis and characterization of sol-gel derived Cr2O3 nanoparticles. In AIP Conference Proceedings-American Institute of Physics. 1447(2012).
  12. م. موسایی، م. ع. فقیهی ثانی، س. باغشاهی، م. احسانی. ساخت رنگدانه‌ نانوساختار آبی آلومینات کبالت به روش هیدروترمال. نشریه علمی پژوهشی علوم و فناوری رنگ. (1391)6، 270-263.
  13. Y. Xiong, X. Lu, Metallic Nanostructures: From controlled synthesis to applications. Springer. 2015.
  14. C. J. Brinker, G. W. Scherer, Sol-gel science: the physics and chemistry of sol-gel processing. Academic press. 2013.
  15. W. Kuang, Y. Fan, K. Yao, Y. Chen, Preparation and characterization of ultrafine rare earth molybdenum complex oxide particles. J. Solid State Chem. 140(1998), 354-360.
  16. O. Watanabe, T. Hibino, M. Sakakibara, Development of an aqueous ink-jet printing system for ceramic tiles. In CFI-Ceram. Forum Int. 89(2012), 124-127.
  17. G. H. Mhlongo, Luminescence investigation of trivalent rare earth ions in sol-gel derived SiO2 and ZnO co-doped SiO2: Pr+, PhD diss, University of the Free State, 2011.
  18. S. K. Durrani, S. Z. Hussain, K. Saeed, Y. Khan, M. Arif, N. Ahmed, Hydrothermal synthesis and characterization of nanosized transition metal chromite spinels. Turk J. Chem.  36 (2012), 111-120.
  19. M. Ocana, Nanosized Cr2O3 hydrate spherical particles prepared by the urea method. J. Eur. Ceram. Soc. 21(2001), 931-939.
  20. F. Farzaneh, Synthesis and characterization of Cr2O3 nanoparticles with triethanolamine in water under microwave irradiation. J. Sci. Islamic Republic Iran.  l22(2011), 329-333.
  21. F. Bondioli, A. M. Ferrari, C. Leonelli, T. Manfredini, L. Linati, P. Mustarelli, Reaction mechanism in alumina/chromia (Al2O3-Cr2O3) solid solutions obtained by coprecipitation.  J. Am. Ceram. Soc. 83(2000), 3234-3234.
  22. L. W. Finger, R. M. Hazen, Crystal structure and isothermal compression of Fe2O3, Cr2O3, and V2O3 to 50 kbars.  J. Appl. Phys. 51(1980), 5362-5367.
  23. H. F. McMurdie, M. C.  Morris, E. H. Evans, B. Paretzkin, W. Wong-Ng, L. Ettlinger, C. R. Hubbard, Standard X-ray diffraction powder patterns from the JCPDS research associateship.  Powder Diffr. 1(1986), 64-77.
  24. X. Liu, C. T.  Prewitt, High-temperature X-ray diffraction study of Co3O4: Transition from normal to disordered spinel.  Phys. Chem. Miner. 17(1990), 168-172.
  25. F. J. Manjón, D. Errandonea, Pressure‐induced structural phase transitions in materials and earth sciences.  Phys. Status Solidi B. 246(2009), 9-31.
  26. D. Gingasu, L. Mindru, D. C. Culita, L. Patron, J. M. Calderon-Moreno, P. Osiceanu, S. Preda, O. Oprea, V. Parvulescu, V. Teodorescu, J. P. S. Walsh, Structural, magnetic and catalytic properties of cobalt chromite obtained through precursor method. Mater. Res. Bull. 62(2015), 52–64.
  27. J. Kim-Zajonz, S. Werner, H. Schulz, High pressure single crystal X-ray diffraction study on ruby up to 31 GPa. Z. Kristallogr. Cryst. Mater.  214(1999), 331-336.
  28. P. Atkins, Shriver, Atkins, inorganic chemistry, Oxford University Press, USA. 2010.
  29. A. Babaei Darani, M. Khajeh Aminian, H. Zare, Synthesis and characterization of two green nanopigments based on chromium oxide. Prog. Color Colorants Coat. 10(2017), 141-148.