Ba-Mn-O Nanocomposites: Sol-Gel Synthesis, Characterization, and Investigation of the Photocatalytic Applications

Document Type : Original Article

Authors

Department of Chemistry, Kosar University of Bojnord, Islamic Republic of Iran, P.O. Box: 94531-55168, Bojnord, Iran

10.30509/jcst.2025.167598.1266

Abstract

Photocatalysts can degrade organic dyes using solar energy. Nowadays, there is increasing interest in studying photocatalytic reactions in water. In this study, several methods for synthesizing Ba-Mn mixed oxides were investigated. BaMnO3 nanocomposites (Ba-Mn-O NCs) were created through the sol-gel process, characterized with various techniques, and used as photocatalysts to remove colored water pollutants. The effectiveness of these photocatalysts in degrading organic dyes such as methyl orange (MO), eriochrome black T (EBT), rhodamine B (RhB), and malachite green ((MG) was studied in the presence of the synthesized photocatalysts, and optimal conditions for improving dye degradation (including dye concentration and photocatalyst dosage) were examined. The results showed 88 % degradation of MO and 69 % degradation of EBT after 90 minutes of visible light exposure in the presence of the photocatalysts. The best conditions for maximum degradation (88 % for MO) were found to be 10 ppm of MO dye and 0.03 g of photocatalyst.

Keywords

Main Subjects


  1. Renukadevi R, Sundaram R, Kasinathan K. Barium Oxide nanoparticles with robust catalytic, photocatalytic and humidity sensing properties. J Nanostruct. 2020; 10(1):167-76. https://doi.org/10.22052/JNS.2020.01.018.
  2. Chamberland BL, Sleight AW, Weiher JF. Preparation and characterization of BaMnO3 and SrMnO3 polytypes. J Solid State Chem. 1970;1(3):506-511. https://doi. org/10.1016/0022-4596(70)90133-7.
  3. Negas T, Roth RS. Phase equilibria and structural relations in the system BaMnO3−x. J Solid State Chem. 1971;3(3):323-39. https://doi.org/10.1016/0022-4596(71) 90068-5.
  4. Qin S, Chin Y-Y, Zhou B, Liu Z, Xubin Y, Guo J, et al. High-pressure synthesis and magnetism of the 4H -BaMnO3 single crystal and Its 6H -type polymorph. Inorg Chem. 2021;60(21):16308-16315. https://doi.org/ 10.1021/acs. inorgchem. 1c02155.
  5. Gholamrezaei S, Ghanbari M, Amiri O, Salavati-Niasari M, Foong LK. BaMnO3 nanostructures: Simple ultrasonic fabrication and novel catalytic agent toward oxygen evolution of water splitting reaction. Ultrason Sonochem. 2020;61:104829. https://doi.org/10.1016/j. ultsonch.2019.104829.
  6. Sobhani A. CuMn2O4/Mn2O3 micro composites: Sol-gel synthesis in the presence of sucrose and investigation 

    of their photocatalytic properties. Arabian J Chem. 2023; 16(10):105201. https://doi.org/10.1016/j.arabjc.2023. 105 201 

  7. Razavi FS, Sobhani A, Amiri O, Ghiyasiyan-Arani M, Salavati-Niasari M. Green sol-gel auto-combustion synthesis, characterization and investigation of the electrochemical hydrogen storage properties of barium cobalt oxide nanocomposites with maltose. Int J Hydrogen Energy. 2020;45(35):17662-17670. https://doi. org/10.1016/ j.ijhydene.2020.04.273.
  8. Bayat S, Sobhani A, Salavati-Niasari M. Simple sol–gel green auto combustion synthesis by using carbohydrate sugars as a novel reducing agent, characterization, photocatalytic behavior and slow-burning property of Ni2SiO4 nanocomposites. J Mater Sci: Mater Electron. 2017;28(22):16981-16991. https://doi.org/10.1007/s 10854 - 017-7620-0.
  9. Mahdiani M, Sobhani A, Ansari F, Salavati-Niasari M. Lead hexaferrite nanostructures: green amino acid sol–gel auto-combustion synthesis, characterization and considering magnetic property. J Mater Sci: Mater Electron. 2017;28(23):17627-34. https://doi.org/10.1007/ s10854-017-7701-0.
  10. Lee AS, Choi S-S, Baek K-Y, Hwang SS. Hydrolysis kinetics of a sol-gel equilibrium yielding ladder-like polysilsesquioxanes. Inorgc Chem Commun. 2016;73:7-11. https://doi.org/10.1016/j.inoche.2016.09. 004.
  11. Orooji Y, Mohassel R, Amiri O, Sobhani A, Salavati-Niasari M. Gd2ZnMnO6/ZnO nanocomposites: Green sol-gel auto-combustion synthesis, characterization and photocatalytic degradation of different dye pollutants in water. J Alloys Compd. 2020;835:155240. https://doi. org/10.1016/j.jallcom.2020.155240.
  12. Livage J. Sol-gel processes. Curr Opi Solid State Mater Sci. 1997;2(2):132-8. https://doi.org/10.1016/S1359-02 86(97)80057-5.
  13. Zinatloo-Ajabshir S, Salavati-Niasari M. Preparation of magnetically retrievable CoFe2O4@SiO2@Dy2Ce2O7 nanocomposites as novel photocatalyst for highly efficient degradation of organic contaminants. Compos Part B. 2019;174:106930. https://doi.org/10.1016/j. compositesb.2019.106930
  14. Zinatloo-Ajabshir S, Morassaei MS, Amiri O, Salavati-Niasari M. Green synthesis of dysprosium stannate nanoparticles using Ficus carica extract as photocatalyst for the degradation of organic pollutants under visible irradiation. Ceram Int. 2020;46(5):6095-107. https://doi. org/10.1016/j.ceramint.2019.11.072
  15. Mousavi-Kamazani M. Facile hydrothermal synthesis of egg-like BiVO4 nanostructures for photocatalytic desulfurization of thiophene under visible light irradiation. J Mater Sci: Mater Electron. 2019;30(19): 17735-40. 10.1007/s10854-019-02123-0.
  16. Naz F, Saeed K. Synthesis of barium oxide nanoparticles and its novel application as a catalyst for the photodegradation of malachite green dye. Appl Water Sci. 2022;12(6):121. https://doi.org/10.1007/s13201-022-01649-9
  17. Zinatloo-Ajabshir S, Morassaei MS, Salavati‐Niasari M. Eco-friendly synthesis of Nd2Sn2O7–based nanostructure materials using grape juice as green fuel as photocatalyst for the degradation of erythrosine. Compos Part B. 2019; 167:643-653.https://doi.org/10.1016/j.compositesb. 2019. 03.045.
  18. Rahmatolahzadeh R, Mousavi-Kamazani M, Shobeiri SA. Facile Co-precipitation-calcination Synthesis of CuCo2O4 Nanostructures using Novel Precursors for Degradation of Azo Dyes. J Inorg Organomet Polym Mater.2017;27(1):313-22.https://doi.org/10.1007/s 10904 - 016-0473-9.
  19. Singh S, Maiti S, Rani S, Raj H, Bisht RS, Panigrahi SK, et al. Ti doped BaMnO3 perovskite structure as photo-catalytic agent for the degradation of noxious air and water pollutants. SN Applied Sciences. 2020;2(2):310. https://doi. org10.1007/s42452-020-2121-9.
  20. Akbari E, Alavi SM, Rezaei M, Larimi A. Barium promoted manganese oxide catalysts in low-temperature methane catalytic combustion. Int J Hydrogen Energy. 2021;46(7):5181-96. https://doi.org/10.1016/j.ijhydene. 2020.11.016.
  21. Yu P, Shi J, Wan H, Tang Z, Yuan K, Li X, et al. Contribution of multi-metal oxides based on SrMnO3 for the enhanced formation of Ov on chlorobenzene degra-dation: performance and mechanism. 2025. https://doi. org/10.21203/rs.3.rs-5995427/v1
  22. Saleem A, Shahzad I, Akhter P, Younas U, Ali F, Ahmad A, et al. Structural, electronic and optical properties of SrMnO3 photocatalyst for dye degradation: Experimental and DFT study. J Alloys Compd. 2025;1010:176922. https://doi.org/10.1016/j.jallcom.2024.176922
  23. Ahmadi Golsefidi M, Khojasteh H, Azimi C, Abbasi A. Grafting of Ag nanoparticles on SrMnO3: Effect of capping agent and alkaline agent on the morphology of SrMnO3 nanostructures for enhancing photocatalytic performance. J Nanostruct. 2020;10(4):825-37. http://doi. org/10.22052/JNS.2020.04.016.
  24. Wang LJ, Zhou Q, Liang Y, Shi H, Zhang G, Wang B, et al. Size effect and enhanced photocatalytic activity of CuO sheet-like nanostructures prepared by a room temperature solution phase chemical method. Appl Surf Sci. 2013;271:136-40. https://doi.org/10.1016/j.apsusc. 2013.01.148.
  25. Ma P, Geng Q, Gao X, Yang S, Liu G. Solution combustion of spinel CuMn2O4 ceramic pigments for thickness sensitive spectrally selective (TSSS) paint coatings. Ceram Int. 2016;42(10):11966-73. https://doi. org/10.1016/j.ceramint.2016.04.122.
  26. Ullah I, Khan I, Shoaib M, Rooh G, Thanyaphirak W, Angnanon A, et al. X-ray imaging and illumination materials from Gd3+-Sm3+ co-doped in telluroborate scintillating glass. Radiat Phys Chem. 2026;238:113192. https://doi.org/10.1016/j.radphyschem.2025.113192.
  27. Damayanti N, Prasetyoko D, Suprapto S, Tamim R, Subagyo R, Kusnawati L, et al. Pluronic P123 modified MXene as an efficient adsorbent for aqueous dye Removal: Optimization using CCD-RSM. J Industrial Eng Chem. 2025. https://doi.org/10.1016/j.jiec.2025.07. 022.
  28. Rubesh Ashok Kumar S, Vasvini Mary D, Suganya Josephine GA. Incorporation of WCe oxides on Ti3C2Tx/gC3N4 bi-layers: An efficient photocatalyst under visible/sunlight irradiation. FlatChem. 2025;53: 100920. https://doi.org/10.1016/j.flatc.2025.100920.
  29. Meena PL, Surela AK, Chhachhia LK, Kumar N. Dye sensitized photoactivation of ZnO/Zn(NCN) nano-composites obtained via solvent free mechanothermal process and their photocatalytic application. Ceram Int. 2025;51(4):4891-903. https://doi.org/10. 1016/j.ceramint. 2024.11.462
  30. Toygun Ş, Köneçoğlu G, Kalpaklı Y. General principles of sol-gel. Sigma J Eng Natural Sci. 2013;31(4):456-76.