Characterization of Red and Brown Color on Mina'i Ceramics from Sixth to Seventh Century AH in Iran Based on Instrumental Methods

Document Type : Original Article

Authors

1 Islamic Art Department, Handicrafts Faculty, Art University of Isfahan, P.O. Box: 1744, Isfahan, Iran

2 Nuclear Science and Technology Research Institute (NSTRI), Physics and Accelerators Research School, Van de Graaff Laboratory, P.O. Box: 11365-3486, Tehran, Iran

10.30509/jcst.2025.167437.1248

Abstract

This study investigated the red and brown pigment colors of twelve Mina'i samples from sixth to seventh centuries AH from Alamut castle, Rayy and attributed to Rayy in National Museum of Iran by Micro-PIXI, optical microscopy and scanning electron microscopy. The main aim of the research was to explore various techniques for applying red and brown pigments on the base glaze and to analyse the elemental compositions and factors influencing the production of these pigments. This investigation revealed six distinct colors of red. By examining the distribution of elements, it was found that iron is the factor that produces red and brown colors in these potteries. Also, the results of elemental compositions demonstrate that the base glazes are divided into three groups: lead glaze, alkaline glaze, and lead-tin-soda glaze. Other results confirm that increasing the amount of iron oxide in the lead base glaze significantly impacted the production of the brown color. This paper's findings confirm the technique for producing red color as described in the Islamic medieval Iranian treatise.

Keywords

Main Subjects


  1. Phipps E. Cochineal red: The art history of a color, New York: Metropolitan Museum of Art; 2010.
  2. Hashimoto H, Higuchi K, Inada H, Okazaki Y, Takaishi T, Asoh H. Well-dispersed α-Fe2O3 particles for lead-Free red overglaze enamels through hydrothermal treatment, ACS Omega. 2016; 1(1):9-13. https://doi.org/10.1021/ acsomega. 6b00040.
  3. Gol F, Gizem Saritas Z, Cıbuk S, Ture C, Kacar E, Yilmaz A, Arslan M, Sen F. Coloring effect of iron oxide content on ceramic glazes and their comparison with the similar waste containing materials, Ceram Int. 2022;48: 2241-2249. https://doi.org/10.1016/j.ceramint.2021.10.001.
  4.  Watson, O. Ceramics of Iran: Islamic Pottery from the Sarikhani Collection. 1th ed. New Haven and London: Yale University Press; 2020.
  5.  McClary, R P. Rare and Complex Wares: A Study of Vessels and Sherds Decorated with Both Mīnāʾī and Lustre Techniques. Mater Cult Muslim World. 2022;3(2):235-266. https://doi.org/10.1163/26666286-12340035.
  6.  Pope, A. U. A survey of Persian art from prehistoric times to the present. London and New York: Oxford University Press; 1938.
  7.  Ferrier, R.W. The Arts of Persia, London: Yale University Press; 1989.
  8.  Fehérvári, G. Ceramics of the Islamic World: In the Tareq Rajab Museum, I. B. Tauris; 2000.
  9.  Ettinghausen, R. Islamic art and archaeology. Princeton: Princeton University Press; 1951.
  10.  Masuya, T. Ilkhanid courtly life. In The legacy of Genghis Khan: Courtly art and culture in Western Asia, ed. L. Komaroff and S. Carboni, 74-103. New York: Metropolitan Museum of Art; New Haven and London: Yale University Press; 2002. 1256-1353.
  11.  Wilson A.J. Islamic Pottery, translated by Mahnaz Shayestehfar, Tehran: Islamic Art Studies; 2004 (In Persian).
  12.  Choubak H. Alamut Castle (Eagle's Nest) 2009.  [Cited 2016 Aug 23]. Available from: http://www.chn.ir/NSite/FullStory/ News/?Id=68476&Serv=0&SGr=0.
  13.  Lane, A. Early Islamic Pottery: Mesopotamia, Egypt and Persia, Faber & Faber; 1927.
  14.  Keblow-Bernsted A.M. Early Islamic Pottery Materials And Techniques, Archetype. 2003; 44-49.
  15.  Abu al-Qasim Abdullah Kashani. Arais al-Jawahir wa Nafais al- Atayyib. Edited by Iraj Afshar, Tehran: Al-Moei;2007. [In Persian]
  16.  Allan, J. W. Abu '1-Qasim's treatise on ceramics, Iran. 1973; 11:111-120. https://doi.org/10.2307/4300488.
  17.  Mason RB, Tite MS, Paynter S, Salter C Advances in polychrome ceramics in the Islamic world of the 12th century AD. Archaeometry. 2001; 43:191–209. doi.org/10.1111/1475-4754.00014.
  18.  Koss K, McCarthy B, Chase ES, Smith D Analysis of Persian painted mina’i ware. In: McCarthy B et al. (ed), Scientifc research on historic Asian ceramics. Proceedings of the Fourth Forbes Symposium at the Freer Gallery of Art, Archetype. 2009; 33–50.
  19.  Yazdani, M., Ahmadi, H., Emami, S. M. A., Lamehi Rashti, M. L. R., Agha-Aligol, D. A., Abdillah khan gorji, M., Choubak, H. Technological Study of Gilded Mina’i Ware Based on Microscopic Investigation and Historical Documents. Pazhoheshha-ye Bastan shenasi Iran. 2017; 7(14): 161-178. https://doi.org/10.22084/nbsh.2017.10811.1471 [In Persian].
  20.  Wen, R., Pollard A. The pigments applied to Islamic Mına’i Wares and the correlation with Chinese Blue-and-White porcelain. Archaeom. 2015; 58, 1–16.
  21.  Holakooei P, Mishmastnehi M, Moloodi Arani A. Röhrs S,  Franke U. Materials and technique of lajvardina ceramics from the thirteenth to fourteenth century Iran. Archaeol Anthropol Sci. 2023;15,33. https://doi.org/10.1007/s12520-023-01738-z.
  22.  Colomban P, Simsek Franci G, Ngo A-T, Gallet X. Non-Invasive Raman and XRF Study of Mīnā’ī Decoration, the First Sophisticated Painted Enamels. Mater. 2025; 18(3): 575. https://doi.org/10.3390/ma18030575.
  23.  Maleki Miyanagi A. Geography of Rey, Qom: Dar-Alhadith; 2004 [In Persian].
  24.  Schmidt B, Wetzig K. Ion Beams in Materials Processing and Analysis, Springer Vienna; 2012.
  25.  Nastasi M, Mayer JW, Wang Y. Ion beam analysis: fundamentals and applications, Taylor & Francis; 2014.
  26.  Campbell JL, Boyd NI, Grassi, N, Bonnick P, Maxwell JA. The Guelph PIXE software package IV, Nucl Instrum Methods Phys Res Sect B. 2010; (268): 3356-3363. https://doi.org/10.1016/j.nimb.2010.07.012.
  27.  Grime G.W, Watt F. Focusing protons and light ions to micron and submicron dimensions, Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms. 1988; 30, 3:227-234. https://doi. org/10.1016/0168-583X(88)90002-X.
  28.  Vicenzi E.P, Eggins S, Logan A, Wysoczanski R. Microbeam Characterization of Corning Archeological Reference Glasses: New Additions to the Smithsonian Microbeam Standard Collection, J Res Nat Inst Stand Technol. 2002; (107): 719-727. https://doi. org/10.6028/jres.107.058.
  29.  Matin M. Tin-based opacifiers in archaeological glass and ceramic glazes: a review and new perspectives. Archaeol Anthropol Sci. 2019; 11, 1155-1167. https://doi.org/10. 1007/ s12520-018-0735-2.
  30. Pradell T, Molera J, Salvadó N, Labrador A. The use of micro-XRD for the study of glaze color decorations, Appl Phys A. 2013; 111: 121-127. https://doi.org/10. 1007/ s00339-012-7445-x.
  31. Gómez M, Auxiliadora Á, Polvorinos del Río J, Castaing J, Pleguezuelo A. Ceramics by Niculoso Pisano and quantitative analysis of glazes using portable XRF, Documento traducido gracias a la desinteresada colaboración de Morote Traducciones. Artículo publicado inicialmente en español. 2016; 1-23. https://hdl.handle.net/11532/300292.
  32. Hamer F, Hamer J. The potter's dictionary of materials and techniques, London: A&C; 2003.
  33. Mason R.B. Shine Like the Sun: Lustre-painted and Associated Pottery from the Medieval Middle East, Mazda Publishers; 2004.
  34. Maltoni S, Silvestri A, Maritan L, Molin G. The Medieval lead-glazed pottery from Nogara (north-east Italy): a multi-methodological study, J Archaeol Sci. 2012; 39, 7: 2071-2078. https://doi.org/10.1016/j. .2012. 03. 016.
  35.  Seetha D, Velraj G. FT-IR, XRD, SEM-EDS, EDXRF and chemometric analyses of archaeological artifacts recently excavated from Chandravalli in Karnataka State, South India, Radiation Phys Chem.
  36. Salinas E, Pradell T. The transition from lead transparent to tin-opacified glaze productions in the western Islamic lands: al-Andalus, c. 875–929 CE, J Archaeol Sci. 2018; 94, 1-11. https://doi.org/10.1016/j.jas.2018.03. 010.
  37.  Özçatal M, Yaygıngöl M, İssi A, Kara A, Turan S, Okyar F, et. al. Characterization of lead glazed potteries from Smyrna (Izmir/Turkey) using multiple analytical techniques; Part I: Glaze and engobe, Ceram Int 40. 2014; 2143-2151. https://doi.org/10.1016/j.ceramint.2013.07.132.
  38. De Bonis A, D’Angelo M, Guarino V, Massa S, Anaraki F.S, Genito B, Morra V.. Unglazed pottery from the masjed-i jom'e of Isfahan (Iran): technology and provenance, Archaeol Anthropol Sci. 2017; 9,617-635. https://doi.org/10. 1007/ s12520-016-0407-z.
  39. Osete-Cortina L, Doménech-Carbó M.T, Doménech A, Yusá-Marco D.J, Ahmadi H. Multimethod analysis of Iranian Ilkhanate ceramics from the Takht-e Soleyman palace. Anal Bioanal Chem. 2010; 397, 319-329. https://doi.org/10. 1007/ s00216-009-3413-5.
  40.  Smith D. Considering the colors of mina’i ware. MET Objectives. 2001; 3:9–11